
State Machine Replication in the Libra
Blockchain

Mathieu Baudet, Avery Ching, Andrey Chursin, George Danezis, François Garillot, Zekun Li,
Dahlia Malkhi, Oded Naor, Dmitri Perelman, Alberto Sonnino*

Abstract. This report presents LibraBFT, a robust and efficient state machine replication system
designed for the Libra Blockchain. LibraBFT is based on HotStuff, a recent protocol that leverages
several decades of scientific advances in Byzantine fault tolerance (BFT) and achieves the strong
scalability and security properties required by internet settings. LibraBFT further refines the HotStuff
protocol to introduce explicit liveness mechanisms and provides a concrete latency analysis. To
drive the integration with the Libra Blockchain, this document provides specifications extracted
from a fully-functional simulator. These specifications include state replication interfaces and a
communication framework for data transfer and state synchronization among participants. Finally,
this report provides a formal safety proof that induces criteria to detect misbehavior of BFT nodes,
coupled with a simple reward and punishment mechanism.

1. Introduction

The advent of the internet and mobile broadband has connected billions of people globally, providing
access to knowledge, free communications, and a wide range of lower-cost, more convenient services.
This connectivity has also enabled more people to access the financial ecosystem. Yet, despite this
progress, access to financial services is still limited for those who need it most.

Blockchains and cryptocurrencies have shown that the latest advances in computer science, cryptog-
raphy, and economics have the potential to create innovation in financial infrastructure, but existing
systems have not yet reached mainstream adoption. As the next step toward this goal, we have de-
signed the Libra Blockchain [1], [2] with the mission to enable a simple global currency and financial
infrastructure that empowers billions of people.

At the heart of this new blockchain is a consensus protocol called LibraBFT — the focus of this report
— by which blockchain transactions are ordered and finalized. LibraBFT decentralizes trust among
a set of validators that participate in the consensus protocol. LibraBFT guarantees consensus on the
history of transactions among honest validators and remains safe even if a threshold of participants
are Byzantine (i.e., faulty or corrupt [3]). By embracing the classical approach to Byzantine fault
tolerance, LibraBFT builds on solid and rigorously proven foundations in distributed computing.
Furthermore, the scientific community has made steady progress, which LibraBFT builds on, in
scaling consensus technology and making it robust for internet settings.

∗ The authors work at Calibra, a subsidiary of Facebook, Inc., and contribute this paper to the Libra Association
under a Creative Commons Attribution 4.0 International License. For more information on the Libra ecosystem,
please refer to the Libra white paper [1].

Revised August 28, 2019

1

https://creativecommons.org/licenses/by/4.0/
https://libra.org/en-us/whitepaper

Initially, the participating validators will be permitted into the consensus network by an association
consisting of a geographically distributed and diverse set of members, which are organiza-tions
chosen according to objective membership criteria with a vested interest in bootstrapping the Libra
ecosystem [2]. Over time, membership eligibility will shift to become open and based only on an
organization’s holdings of Libra [4].

The LibraBFT consensus is based on a cutting-edge technique called HotStuff [5], [6] t hat bridges
between the world of BFT consensus and blockchain. This choice reflects vast expert knowledge and
exploration of various alternatives and provides LibraBFT with the following key properties that are
crucial for decentralizing trust:

• Safety: LibraBFT maintains consistency among honest validators, even if up to one-third of
the validators are corrupt.

• Asynchrony: Consistency is guaranteed even in cases of network asynchrony (i.e., during pe-
riods of unbounded communication delays or network disruptions). This reflects our belief that
building internet-scale consensus protocol whose safety relies on synchrony would be inherently
both complex and vulnerable to Denial-of-Service (DoS) attacks on the network.

• Finality: LibraBFT supports a notion of finality, whereby a transaction becomes irreversibly
committed. It provides concise commitments that authenticate the result of ledger queries to
an end user.

• Linearity and Responsiveness: LibraBFT has two desirable properties that BFT consensus
protocols preceding HotStuff were not able to simultaneously support — linearity and respon-
siveness. These two technical concepts are linked with the notion of leaders, a key approach for
driving progress against partial synchrony. Informally, linearity guarantees that driving trans-
action commits incurs only linear communication (this is optimal) even when leaders rotate;
responsiveness means that the leader has no built-in delay steps and advances as soon as it
collects responses from validators.

• Simplicity and Modularity: The core logic of LibraBFT allows simple and robust imple-
mentation, paralleling that of public blockchains based on Nakamoto consensus [7]. Notably,
the protocol is organized around a single communication phase and allows a concise safety
argument.

• Sustainability: Current public blockchains, where trust is based on computational power,
have been reported to consume vast amounts of energy [8] and may be subject to central-
ization [9]. LibraBFT is designed as a proof-of-stake system, where participation privileges
are granted to known members based on their financial involvement. LibraBFT can support
economic incentives to reward good behaviors and/or punish wrongdoings from stakeholders.
Computational costs in LibraBFT consist primarily of cryptographic signatures, a standard
concept with efficient implementations.

Key technical approach. LibraBFT is a consensus protocol that progresses in rounds, where in each
round a leader is chosen amongst the validators. As mentioned above, this key approach is needed for
driving progress against partial synchrony. The leader proposes a new block consisting of transactions
and sends it to the rest of the validators, who approve the new block if it consists of valid transactions.
Once the leader collects a majority of votes, she sends it to the rest of the validators. If a leader
fails to propose a valid block or does not aggregate enough votes, a timeout mechanism will force a
new round, and a new leader will be chosen from the validators. This way, new blocks extend the
blockchain. Eventually, a block will meet the commit rule of LibraBFT, and once this happens, this
block and any prior block is committed.

Related work. A comprehensive survey is beyond the scope of this manuscript (see for example [10]–
[12]). Here we mention key concepts and mechanisms that influenced our work.

2

Consensus algorithms in classical setting. The Byzantine consensus problem was pioneered
by Lamport et al. [3], who also coined the term Byzantine to model arbitrary, possibly maliciously
corrupt behavior. The safety of the solution introduced by Lamport et al. relied on synchrony, a
dependency that practical systems wish to avoid both due to complexity and because it exposes the
system to DoS attacks on safety.

In lieu of synchrony assumptions, randomized algorithms, pioneered by Ben-Or [13], guarantee
progress with high probability. A line of research gradually improved the scalability of such algo-
rithms, including [14]–[17]. However, most practical systems did not yet incorporate randomization.
In the future, LibraBFT may incorporate certain randomization to thwart adaptive attacks.

A different approach for asynchronous settings, introduced by Dwork et al. [18], separated safety (at
all times) from liveness (during periods of synchrony). Dwork et al. introduced a round-by-round
paradigm where each round is driven by a designated leader. Progress is guaranteed during periods of
synchrony as soon as an honest leader emerges, and until then, rounds are retired by timeouts. Dwork
et al.’s approach (DLS) underlies most practical BFT works to date, with steady improvements to its
performance. Specifically, it underlies the first practical solution introduced by Castro and Liskov [19]
called PBFT. In PBFT, an honest leader reaches a decision in two all-to-all communication rounds. In
addition to the original open-source implementation of PBFT, the protocol has been integrated into
BFT-SMaRt [20] and, recently, into FaB [21]. Zyzzyva [22] adds an optimistically fast track to PBFT
that can reach a decision in one round when there are no failures. An open-source implementation of
Zyzzyva was built in Upright [23]. Response aggregation using threshold cryptography was utilized in
consensus protocols by Cachin [24] and Reiter [25] to replace all-to-all communication with an all-to-
collector and collector-to-all pattern that incurs only linear communication costs. Threshold signature
aggregation has been incorporated into several PBFT-based systems, including Byzcoin [26] and
SBFT [27]. Similarly, LibraBFT incorporates message collection and fast signature aggregation [28].
Compared with threshold signature, signature aggregation in LibraBFT does not require distributed
setup and enables economic incentives for voters at the price of one additional bit per node per
signature.

Two blockchain systems, Tendermint [29] and Casper [30], presented a new variant of PBFT that
simplifies the leader-replacement protocol of PBFT such that it has only linear communication cost
(linearity). These variants forego a hallmark property of practical solutions called responsiveness.
Informally, (optimistic) responsiveness holds when leaders can propose new blocks as soon as they
receive a fixed number of messages, as opposed to waiting for a fixed delay. Thus, Tendermint and
Casper introduced into the field a trade-off in practical BFT solutions — either they have linearity or
responsiveness, but not both. The HotStuff solution, which LibraBFT is based on (as well as other
recent blockchains, notably ThunderCore with a variant named PaLa [31]) resolved this trade-off and
presented the first BFT consensus protocol that has both.

Consensus in a permissionless setting. All the works mentioned above assume a permissioned
setting, i.e., the participating players are known in advance. Differently, in a permissionless setting,
any party can join and participate in the protocol — which is what Nakamoto Consensus (NC) [7]
aims to solve — resulting in an entirely different protocol structure. In NC, transactions (gathered
in blocks) are chained and simply disseminated to the network with a proof of work. Finality is
defined probabilistically — the probability that a block remains in the history is proportional to the
computational cost of succeeding blocks in the blockchain. The reward mechanism for extending the
current chain suffices to incentivize miners to accept the current chain de facto and rapidly converge
on a single, longest fork. Casper and HotStuff exhibit similar simplicity of protocol structure. They
embed the protocol rounds into a (possibly branching) chain and deduce commit decisions by simple
offline analysis of the chains.

3

Several blockchains are similarly based on graphs of blocks in the form of direct acyclic graphs
(DAG) allowing greater concurrency in posting blocks into the graph, e.g., GHOST [32], Conflux [33],
Blockmania [34] and Hashgraph [35]. Our experience with some of these paradigms indicates that
recovering graph information and verifying it after a participant loses connection temporarily can
be challenging. In LibraBFT, only leaders can extend chains; hence, disseminating, recovering, and
verifying graph information is simple and essentially linear.

Revisiting LibraBFT. LibraBFT leverages HotStuff (ArXiv version [5], to appear in PODC’19 [6])
and possesses many of the benefits achieved in four decades of works presented above. Specifically,
LibraBFT adopts the DLS and PBFT round-based approach, has signature aggregation, and has
both linearity and responsiveness. We also found that the chain structure of Casper and HotStuff
leads to robust implementation and concise safety arguments.

Compared with HotStuff itself, LibraBFT makes a number of enhancements. LibraBFT provides a
detailed specification and implementation of the pacemaker mechanism by which participants synchro-
nize rounds. This is coupled with a liveness analysis that consists of concrete bounds to transaction
commitment. LibraBFT includes a reconfiguration mechanism of the validator voting rights (epochs).
It also describes mechanisms to reward proposers and voters. The specification allows deriving safe
and complete criteria to detect validators that attempt to break safety, enabling punishment to be
incorporated into the protocol in the future. We also elaborate on the protocol for data dissemination
among validators to synchronize their state.

Organization. The remainder of this report is structured as follows: we start by introducing impor-
tant concepts and definitions (Section 2) and how LibraBFT is used in the Libra Blockchain (Sec-
tion 3). We then describe the core data types of LibraBFT and its network communication layer (Sec-
tion 4). Next, we present the protocol itself (Section 5) with enough detail to prepare the proof of
safety (Section 6). We then describe the pacemaker module (Section 7) and prove liveness (Section 8).
Finally, we discuss the economic incentives of LibraBFT (Section 9) and conclude in Section 10.

In this initial report, we have chosen to use a minimal subset of Rust as a specification language for
the protocol, whenever code was needed. All the code fragments in Rust are directly extracted from
our reference implementation in a discrete-event simulated environment [36].

2. Overview and Definitions

We start by describing the desired properties of LibraBFT and how our state machine replication
protocol is meant to be integrated into the Libra Blockchain.

2.1. State Machine Replication

State Machine Replication (SMR) protocols [37] are meant to provide an abstract state machine
distributed over the network and replicated between many processes, also called nodes.

Specifically, a SMR protocol is started with some initial execution state. Every process can submit
commands and observe a sequence of commits. Each commit contains the execution state that is the
result of executing a particular command on top of the previous commit. Commands may be rejected
during execution: in this case, they are called invalid commands.

Assuming that command execution is deterministic, we wish to guarantee the following properties:

(safety) All honest nodes observe the same sequence of commits.

4

(liveness) New commits are produced as long as valid commands are submitted.

Note that nodes should observe commits in the same order but not necessarily at the same time. The
notion of an honest node is made precise below in Section 2.3.

2.2. Epochs

For practical applications, the set of nodes participating in the protocol can evolve over time. In
LibraBFT, this is addressed by supporting a notion of epoch:

• Each epoch begins using the last execution state of the previous epoch — or using system-wide
initial parameters for the first epoch.

• We assume that every execution state contains a value epoch_id that identifies the current
epoch.

• When a command that increments epoch_id is committed, the current epoch stops after this
commit, and the next epoch is started.

2.3. Byzantine Fault Tolerance

Historically, fault-tolerant protocols were meant to address common failures, such as crashes. In the
context of a blockchain, the SMR consensus protocol is used to limit the power of individual nodes
in the system. To do so, we must guarantee safety and liveness even when certain nodes deviate
arbitrarily from the protocol.

In the rest of this report, we assume a fixed, unknown subset of malicious nodes for every epoch,
called Byzantine nodes [3]. All the other nodes, called honest nodes, are assumed to follow protocol
specifications scrupulously. During a given epoch, we assume that every SMR node 𝛼 has a fixed
voting power, denoted 𝑉 (𝛼) ≥ 0. We write 𝑁 for the total voting power of all nodes and assume a
security threshold 𝑓 as a function of 𝑁 such that 𝑁 > 3𝑓 . For example, we may define 𝑓 = ⌊ 𝑁−1

3 ⌋.

We analyze all consensus properties in the context of the following BFT assumption:

(bft-assumption) The combined voting power of Byzantine nodes during any epoch
must not exceed the security threshold 𝑓 .

A subset of nodes whose combined voting power 𝑀 satisfies 𝑀 ≥ 𝑁 − 𝑓 is called a quorum. The
notion of quorum is justified by the following classic lemma [38]:

Lemma B1: Under BFT assumption, for every two quorums of nodes in the same epoch, there
exists an honest node that belongs to both quorums.

We recall the proof of Lemma B1 in Section 6.1.

2.4. Cryptographic Assumptions

We assume a hash function and a digital signature scheme that are secure against computationally
bounded adversaries and require that every honest node keeps its private signature key(s) secret.

Since our protocol only hashes and signs public values, we may assume all digital signatures to be
unforgeable in a strong non-probabilistic sense, meaning that any valid signature must originate from
the owner of the private key. Similarly, we may assume that collisions in the hash function hash will
never happen, therefore hash(𝑚1) = hash(𝑚2) implies 𝑚1 = 𝑚2.

5

When hashing and signing data structures (e.g. in Section 4.1), we assume that all the data fields
except signatures, preceded by a type tag, are first turned into a hash value then signed.

2.5. Networking Assumptions and Honest Crashes

While the safety of LibraBFT is guaranteed under the BFT assumption alone, liveness requires
additional assumptions on the network and the processes. Specifically, we will assume that the
network alternates between periods of bad and good connectivity, known as periods of asynchrony and
synchrony, respectively. Liveness can only be guaranteed during long-enough periods of synchrony.

During periods of asynchrony, we allow messages to be lost or to take an arbitrarily long time. We
also allow honest nodes to crash and restart, as long as they do not lose local state data and become
responsive again by the end of the asynchronous period. During periods of synchrony, we assume that
there exists an upper bound 𝛿 to the transmission delay taken by any message between honest nodes,
and that honest processes are responsive and do not crash. We stress that the adversary controls
malicious nodes and the scheduling of networking messages even during periods of synchrony, subject
to the maximal delay 𝛿.

The parameters of this model — such as the value of 𝛿 or whether the network is currently synchronous
or not — are not available to the participants within the system. To simplify the analysis, it is usual
in the literature to consider only two periods: before some unknown global stabilization time, called
GST, and after GST. Our proof of liveness (Section 8) will give concrete upper bounds on the time
needed by the system to produce a commit after GST.

More formally, the assumptions on network and crashes are as follows:

(eventually-synchronous-network) After GST, the network delivers all messages be-
tween honest nodes within some (unknown) time delay 𝛿 > 0.

(eventually-no-crash) After GST, honest nodes are responsive and do not crash.

We remark that the GST model does not take into account CPU time associated with message
processing. Since message sizes in LibraBFT are not bounded, a fixed 𝛿 is arguably over-simplified.
In future work, we may enforce strict bounds on message sizes or take into consideration message
sizes in modeling transmission delays, e.g., assume a delay that consists of a fixed latency component
plus a size-dependent component.

2.6. Leaders, Rounds, Blocks, Votes

LibraBFT belongs to the family of leader-based consensus protocols. In leader-based protocols, nodes
make progress in rounds, each round having a designated node called a leader. Leaders are respon-
sible for proposing new commands and obtaining signatures, called votes, from other nodes on their
proposals. LibraBFT follows the chained variant of HotStuff [5], where a round is a communication
phase with a single designated leader, and leader proposals are organized into a chain of blocks using
cryptographic hashes.

6

SMR Exec SMR Exec

SMR Exec SMR Exec

Libra transaction

validator validator

validator validator

Figure 1: Integration of the SMR module into the Libra Blockchain

3. Integration with the Libra Blockchain

3.1. Consensus Protocol

We expect LibraBFT to be used in the Libra Blockchain [2] as follows:

• The validators of Libra participate in the LibraBFT protocol in order to securely replicate the
state of the Libra Blockchain. We call SMR module the software implementation of a LibraBFT
node run by each validator. From here on, we refer to participants of LibraBFT as validator
nodes, or simply nodes.

• Commands sent to the SMR module are sequences of Libra transactions. From the point of
view of the SMR module, commands and execution states are opaque data structures. The
SMR module delegates the execution of commands entirely to the execution module of Libra
(see possible APIs in Appendix A.1). We read the epoch_id from the execution state. (Recall
that the current epoch stops when a change to epoch_id is committed.)

• Importantly, the SMR module also delegates to the rest of the system the computation of
voting rights within a given epoch. This is done using the same callbacks (Appendix A.1) to
the execution layer as the ones managing epochs. For better flexibility and transparency, we
expect this logic to be written in Move [39], the language for programmable transactions in
Libra.

• Every time a command needs to be executed, the execution engine is given a time value meant
for Move smart contracts. This value is guaranteed to be consistent across every SMR node
that executes the same command.

• Execution states seen by the SMR module need not be the actual blockchain data. In practice,
what we call “execution state” in this report is a lightweight data structure (e.g., a hash value)
that refers to a concrete execution state stored in the local storage of a validator. Every
command that is committed must be executed locally at least once by every validator. In the
future, LibraBFT may include additional mechanisms for a validator to synchronize with the
local storage of another validator corresponding to a recent execution state.

3.2. Libra Clients

The design of LibraBFT is mostly independent of how validator nodes interact with the clients of the
Libra system. However, we can make the following observations:

7

• Transactions submitted by the clients of Libra are first shared between validator nodes using a
mempool protocol. Consensus leaders pull transactions from the mempool when they need to
make a proposal.

• To authenticate the state of blockchain with respect to Libra clients, during the protocol, Li-
braBFT nodes sign short commitments to vouch that a particular execution state is being
committed. This results in cryptographic commit certificates that are verifiable independently
from the details of the consensus protocol of LibraBFT, provided that Libra clients know the
set of validator keys for the corresponding epoch. We describe how commitments are created
together with consensus data in section (Section 4.1).

• Regarding this last assumption, for now, we will consider that Libra clients can learn the set
of validator keys from conventional interactions with one or several trusted validators. In the
future, we will provide a security protocol for this purpose.

3.3. Security

Blockchain applications also require additional security considerations:

• Participants to the protocol should be able to cap the amount of resources (e.g., CPU, memory,
storage, etc.) that they allocate to other nodes to ensure practical liveness despite Byzantine
behaviors. We will see in the next section (Section 4) that our data-communication layer
provides mechanisms to let receivers control how much data they consume (aka back pressure).
A more thorough analysis is left for future versions of this report.

• The economic incentives of rational nodes should be aligned with the security and the perfor-
mance of the SMR protocol. We sketch low-level mechanisms enabling reward and punishment
in section (Section 9).

• Leaders can be subject to targeted denial-of-service attacks. Our pacemaker specifications (Sec-
tion 7) sketches how to introduce a verifiable random function (VRF) [40] to assign leaders to
round numbers in a less predictable way. In the future, we may also influence leader selection
in order to select robust leaders more often. Protection of nodes at the system level is out of
the scope of this report.

Note on Fairness. Besides safety and liveness, another abstract property often discussed in SMR
systems is fairness. This notion is traditionally defined as the fact that every valid command sub-
mitted by an honest node is eventually committed. Yet, this classic definition is less relevant to a
blockchain application such as Libra, where transactions go through a shared mempool first and are
subject to auctions on transaction fees. We leave the discussion on fairness for future work.

4. Consensus Data and Networking

We have outlined the core concepts of LibraBFT in Section 2.6. Before proceeding to a more precise
description of the protocol followed by LibraBFT nodes (Section 5), we define chained data structures,
called records, meant to be exchanged between nodes and stored as part of their states. We also present
the communication framework used to synchronize sets of records over the network.

8

h0 B1

V1

C1 C2 C3

V1

V1

V2 V3

V2

V2

V3

V3

B2 B3

Figure 2: A chain of records in LibraBFT

4.1. Records

The core state of a LibraBFT node consists of a collection of records that are stored locally and
continuously exchanged over the network. We define four kinds of records:

• blocks, meant for the leader of a given round to propose commands to execute.
• votes, by which a node votes for a block and its execution state.
• quorum certificates (QCs), which hold a quorum of votes for a given block and its execution

state — and optionally a commitment meant for Libra clients.
• timeouts, by which a node certifies that its current round has reached a timeout.

All records are signed by their authors. Importantly, blocks are chained (Figure 2): they must include
the hash of the QC of a previous block at a lower round — except for the initial block of an epoch,
which uses a fixed hash value ℎinit as previous QC hash. Votes and QCs include the hash of the block
and the execution state that are the objects of the votes. A QC is created by gathering enough votes
to form a quorum (Section 2.3) in favor of the same execution state, according to the voting rights of
the current epoch. The signatures in the vector of votes of a QC are copied from the original Vote
records that were selected by the author of the QC.

Data structures. The records of LibraBFT are specified using Rust syntax in Table 1, assuming the
following primitive data types:

• State (an abstract SMR execution state, e.g., a reference to local storage)
• Command (an abstract SMR command, e.g., a sequence of transactions)
• EpochId (an integer).
• Round (an integer).
• NodeTime (the system time of a node).
• BlockHash and QuorumCertificateHash (hash values).
• Author (identifier of a consensus node).
• Signature (a digital signature).

Record Store. When necessary, we will distinguish network records — records that have just been
received from the network — from verified records, which have been thoroughly verified to ensure
invariants defined in the next section (Section 4.2). However, we generally use records for verified
records when the context is clear.

For each node, the data structure holding the verified records of a single epoch is called a record store.
We say that a node knows a record if it is present in the record store of its current epoch.

Importantly, invariants enforced by record verification (e.g., chaining rules) and the initial conditions
guarantee that the records of a given epoch form a tree — with the exception of timeouts, which are
not chained. We sketch the possible interfaces of the record store object in Appendix A.2. We make

9

/// A record read from the network.
enum Record {

/// Proposed block, containing a command, e.g. a set of Libra transactions.
Block(Block),
/// A single vote on a proposed block and its execution state.
Vote(Vote),
/// A quorum of votes related to a given block and execution state.
QuorumCertificate(QuorumCertificate),
/// A signal that a particular round of an epoch has reached a timeout.
Timeout(Timeout),

}

struct Block {
/// User-defined command to execute in the state machine.
command: Command,
/// Time proposed for command execution.
time: NodeTime,
/// Hash of the quorum certificate of the previous block.
previous_quorum_certificate_hash: QuorumCertificateHash,
/// Number used to identify repeated attempts to propose a block.
round: Round,
/// Creator of the block.
author: Author,
/// Signs the hash of the block, that is, all the fields above.
signature: Signature,

}

struct Vote {
/// The current epoch.
epoch_id: EpochId,
/// The round of the voted block.
round: Round,
/// Hash of the certified block.
certified_block_hash: BlockHash,
/// Execution state.
state: State,
/// Execution state of the ancestor block (if any) that will match
/// the commit rule when a QC is formed at this round.
committed_state: Option<State>,
/// Creator of the vote.
author: Author,
/// Signs the hash of the vote, that is, all the fields above.
signature: Signature,

}

struct QuorumCertificate {
/// The current epoch.
epoch_id: EpochId,
/// The round of the certified block.
round: Round,
/// Hash of the certified block.
certified_block_hash: BlockHash,
/// Execution state
state: State,
/// Execution state of the ancestor block (if any) that matches
/// the commit rule thanks to this QC.
committed_state: Option<State>,
/// A collections of votes sharing the fields above.
votes: Vec<(Author, Signature)>,
/// The leader who proposed the certified block should also sign the QC.
author: Author,
/// Signs the hash of the QC, that is, all the fields above.
signature: Signature,

}

struct Timeout {
/// The current epoch.
epoch_id: EpochId,
/// The round that has timed out.
round: Round,
/// Round of the highest block with a quorum certificate.
highest_certified_block_round: Round,
/// Creator of the timeout object.
author: Author,
/// Signs the hash of the timeout, that is, all the fields above.
signature: Signature,

}

Table 1: Network records in LibraBFT

10

precise when nodes may delete (clean up) records from their record stores to minimize storage as part
of the description of the protocol in Section 5.7.

Commitments for Libra clients. When a node votes on a block 𝐵, it must set the committed_state
field of the Vote record to a non-empty value whenever forming a QC on 𝐵 would result in a new
commit (according to the commit rule in Section 5.3 below). Say that an ancestor 𝐵′ of 𝐵 will be
newly committed. Then, committed_state is set to the execution state resulting from executing
the chain up to 𝐵′ (included). Note that this execution state is already included in the QC of 𝐵′.
Embedding it again in the committed_state field of the QC of 𝐵 provides clients with a commit
certificate for 𝐵′ — that is, a short cryptographic proof the execution state after 𝐵′ was committed.

4.2. Verification of Network Records

At the beginning of an epoch, consensus nodes agree on an initial value ℎinit of type QuorumCer-
tificateHash. For example, we may define ℎinit = hash(seed || epoch_id) for some fixed value
seed.

A consensus node must sequentially verify all the records that it receives before inserting them to its
record store:

• All signatures should be valid signatures from a node of the current epoch.
• BlockHash values should refer to previously verified blocks.
• QuorumCertificateHash values should refer to verified quorum certificates or the initial

hash ℎinit.
• Rounds should be strictly increasing for successive blocks in a chain of blocks and quorum

certificates. Round numbers in proposed blocks restart at round 1 at every epoch.
• The author of a QC should be the author of the previous block.
• Epoch identifiers in timeouts, votes, and QCs must match the current epoch.
• Round values in votes and QCs must match the round of the certified block.
• Timeout objects must contain a highest certified block round that is not greater than the highest

QC round verified so far.
• The committed_state value in a vote or in quorum certificate should be consistent with the

commit rule (Section 5.3).
• Network records that fail to verify should be skipped.

Given the constraints on hashes of blocks and QCs, except for timeouts, the verified records known
to a node form a tree whose root is the value ℎinit (Lemma S1).

4.3. Communication Framework

In LibraBFT, the communication framework aims at sharing records with a subset of nodes. Specifi-
cally, the framework API consists of three primitive actions:

(i) send, where the node shares the records it has with a fixed number of peers;
(ii) broadcast, where the node sends (pushes) updates to every other node;
(iii) query-all where a node requests (pulls) updates from every other node.

We note that the broadcast action is only guaranteed to reach all honest nodes (aka are reliable
[24]) after GST and if the sender is honest. Before GST or if the sender is dishonest, data may
not be received by every node within the expected delay 𝛿. To address this difficulty, LibraBFT
nodes trigger a query-all action periodically when they receive no new commits for a long time, or
when their current round stays the same after the timeout period is expired (see Sections 5.6, 7.10

11

and 7.11). The diffusion of timeouts and the two periodic mechanisms are the only broadcast and
query-all actions triggered by non-leaders. By limiting all-to-all communication to these delayed
mechanisms, we aim to ensure that in the favorable case where leaders are honest and the network
is fast enough, LibraBFT only requires a linear number of point-to-point communication steps to
produce a commit.

4.4. Data Synchronization

To support the restarting of crashed nodes and the addition of new nodes, we wish to synchronize
data in a flexible way, where senders initiate communication but receivers can skip data that they
already have. In LibraBFT, this is addressed by introducing an exchange protocol called data syn-
chronization.

In the case of the send and broadcast actions ((i) and (ii) above) data synchronization is done in
multiple steps:

• The sender makes the new data available (i.e., passively publish it) as part of its data-
synchronization service.

• It then sends a notification message to each receiver according to the nature of the communi-
cation: a single receiver for point-to-point communications, or all nodes in case of a broadcast
action.

• Receivers optionally connect back to the sender with a request message and retrieve data con-
tained in a response message.

Query-all actions ((iii) above) consist of the third step only: the receiving node sends a request
message to every other node.

When an exchange is completed, receivers should validate received data immediately (Section 4.2)
then make all valid and relevant data available for future exchanges. The nature of the relevant data
that must be re-shared in this way is made precise in Section 7.12.

4.5. Runtime Environment

For the purpose of specifying and simulating LibraBFT, we abstract away details about processes,
networking, timers, and, generally, the operating systems of nodes under the generic term runtime
environment. We will specify the behavior of LibraBFT nodes as the combination of a private local
state and a small number of algorithms called handlers. A handler typically mutates the local state
of the current node and returns a value. Specifications will require the runtime environment to call
handlers at specific times and interpret returned values right away.

4.6. Data-Synchronization Handlers

We now specify the handlers for data synchronization. We require the runtime environment to carry
the notification, request, and response messages sketched in Section 4.4 to their intended recipient
in an authenticated channel. We create three corresponding handlers to be called when a message
is received and returning a possible answer. The additional methods create_notification and
create_request are used when the main handler of node (Section 5.6) requests that the runtime
environment initiate one of the network actions discussed in Section 4.3.

12

Interface in Rust. We express the data-synchronization handlers as a Rust trait as follows:
trait DataSyncNode {

/// Sender role: what to send to initiate a data-synchronization exchange with a receiver.
fn create_notification(&self) -> DataSyncNotification;
/// Query role: what to send to initiate a query exchange and obtain data from a sender.
fn create_request(&self) -> DataSyncRequest;
/// Sender role: handle a request from a receiver.
fn handle_request(&self, request: DataSyncRequest) -> DataSyncResponse;
/// Receiver role: accept or refuse a notification.
fn handle_notification(

&mut self,
notification: DataSyncNotification,
context: &mut SMRContext,

) -> Option<DataSyncRequest>;
/// Receiver role: receive data.
fn handle_response(&mut self, response: DataSyncResponse, context: &mut SMRContext, clock: NodeTime);

}

Data-synchronization handlers continuously query and update the record store of a node, indepen-
dently from the main handler of the protocol, which will be presented in Section 5. Possible definitions
for the three message types DataSyncNotification, DataSyncRequest, and DataSyncResponse are
given in Appendix A.3.

4.7. Mathematical Notations

We have seen that records that fail to be verified are rejected from receiving nodes. Unless mentioned
otherwise, all records considered from now on are verified records. We use the letter 𝛼 to denote a
node of the protocol. We write record_store(𝛼) for the record store of 𝛼 at a given time. We use
the symbol || to denote the concatenation of bit strings.

We introduce the following notations regarding records:

• We use the letter 𝐵 to denote block values; 𝐶 to denote quorum certificates; 𝑉 for votes; 𝑇 for
timeouts; and, finally, 𝑅 to denote either blocks or certificates.

• We use ℎ, ℎ1, etc., to denote hash values of type QuorumCertificateHash or BlockHash. We
use letters 𝑛, 𝑛1, etc., for rounds.

• We write round(𝐵) for the field round of a block and, more generally, foo(𝑅) for any field foo
of a record 𝑅.

• If ℎ = certified_block_hash(𝐶), we write ℎ ← 𝐶. Similarly, we write ℎ ← 𝑉 in case of a
single vote 𝑉 . If ℎ = previous_quorum_certificate_hash(𝐵), we write ℎ ← 𝐵.

• More generally, we see ← as a relation between hashes, blocks, votes, and quorum certificates.
We write 𝐵 ← 𝐶 instead of hash(𝐵) ← 𝐶, 𝐵 ← 𝑉 for hash(𝐵) ← 𝑉 , and 𝐶 ← 𝐵 instead of
hash(𝐶) ← 𝐵.

• Finally, we write ←∗ for the transitive and reflexive closure of ←, that is: 𝑅0 ←∗ 𝑅𝑛 if and
only if 𝑅0 ← 𝑅1 … ← 𝑅𝑛, 𝑛 ≥ 0.

5. The LibraBFT Protocol

5.1. Overview of the Protocol

Each consensus node 𝛼 maintains a local tree of records for the current epoch, previously noted
record_store(𝛼). The initial root of the tree, a QC hash noted ℎinit, is agreed upon as part of the
setup for the consensus epoch. Each branch in the tree is a chain of records, alternating between

13

node3

node2

node1

node0

round 1
(leader: node3)

round 2
(leader: node0)

round 3
(leader: node1)

B1 C1 B2 C2 B3 C3

1 2 3 1 2 3 1 2 3

{V1,V2} {V1,V2,V3} {V0,V2,V3}

Figure 3: Overview of the LibraBFT protocol (simplified, excluding round synchronization)

blocks 𝐵𝑖 and quorum certificates 𝐶𝑖. Formally, such as a chain is denoted: ℎinit ← 𝐵1 ← 𝐶1 … ←
𝐵𝑛[← 𝐶𝑛].
When a node acts as a leader (Figure 3), it must propose a new block of transactions 𝐵𝑛+1, usually
extending the tail quorum certificate 𝐶𝑛 of (one of) its longest branch(es) (1). Assuming that the
proposal 𝐵𝑛+1 is successfully broadcast, honest nodes will verify the data, execute the new block,
and send back a vote to the leader (2). In the absence of execution bugs, honest nodes should agree
on the execution state after 𝐵𝑛+1. Upon receiving enough votes agreeing with this execution state,
the proposer will create a quorum certificate 𝐶𝑛+1 for this block and broadcast it (3). The chain
length has now increased by one: ℎinit ← 𝐵1 ← 𝐶1 … ← 𝐵𝑛+1 ← 𝐶𝑛+1. At this point, the leader is
considered done, and another leader is expected to extend the tree with a new proposal.

Due to network delays and malicious nodes, honest nodes may not always agree on the “best” branch
to extend and for which blocks to vote. Under BFT assumption (Section 2.3), the voting constraints
observed by honest nodes guarantee that when a branch grows enough to include a block 𝐵 that sat-
isfies the commit rule, 𝐵 and its predecessors cannot be challenged by conflicting proposals anymore.
These blocks are thus committed in order to advance the replicated state machine.

To guarantee progress despite malicious nodes or unresponsive leaders, each proposal includes a round
number. A round will time out after a certain time. When the next round becomes active, a new
leader is expected to propose a block. The pacemaker abstraction (Section 7.3) aims to make honest
nodes agree on a unique, active round for sufficiently long periods of time.

We can now rephrase the main goals of the LibraBFT protocol as follows:

(safety) New commits always extend a chain containing all the previous commits.

(liveness) If the network is synchronous for a sufficiently long time, eventually a new
commit is produced.

Layout of the description of LibraBFT. In the rest of this section, we make precise the commit rule
(Section 5.3) and the voting constraints (Section 5.4 and Section 5.5). Then, using the communication
framework described previously in Section 4, we proceed to describe the local state and the behaviors
of nodes in the LibraBFT protocol (Section 5.6 and Section 5.7).

This section provides the prerequisites for the proof of safety given in Section 6. Liveness mechanisms
will be presented in Section 7 and followed by the proof of liveness in Section 8.

14

5.2. Chains

A 𝑘-chain is a sequence of 𝑘 blocks and 𝑘 QCs:

𝐵0 ← 𝐶0 ← … ← 𝐵𝑘−1 ← 𝐶𝑘−1

𝐵0 is called the head of such a chain. 𝐶𝑘−1 is called the tail.

Recall that by definition of the notion of round for blocks, rounds must be strictly increasing along
a chain: round(𝐵𝑖) < round(𝐵𝑖+1).
When rounds increase exactly by one — that is, round(𝐵𝑖) + 1 = round(𝐵𝑖+1) — we say that the
chain has contiguous rounds.

In practice, the round numbers of a chain may fail to be contiguous for many reasons. For example,
a dishonest leader may propose an invalid block, or a leader may fail to gather a quorum of votes in
a timely manner because of network issues. When a quorum certificate is not produced in a round, a
leader at a higher round will eventually propose a block that breaks contiguity in the chain.

5.3. Commit Rule

A block 𝐵0 is said to match the commit rule of LibraBFT in the record store of a node if and only if
it is the head of a 3-chain with contiguous rounds, that is, there exist 𝐶0, 𝐵1, 𝐶1, 𝐵2, 𝐶2 such that

𝐵0 ← 𝐶0 ← 𝐵1 ← 𝐶1 ← 𝐵2 ← 𝐶2

and
round(𝐵2) = round(𝐵1) + 1 = round(𝐵0) + 2

When such a commit rule is observed by a node 𝛼, the blocks preceding 𝐵0 in the record store of 𝛼,
and 𝐵0 itself becomes committed.

Following our previous discussion on commitments (Section 4.1), a valid quorum certificate in the
position of 𝐶2 acts as a commit certificate: it must include a non-empty field value committed_state
to authenticate that the execution state state(𝐶0) was committed in the current epoch. Note that
if committed_state is empty, then 𝐶2 is not a valid record, and it should be ignored (Section 4.2).

5.4. First Voting Constraint: Increasing Round

Safety of the commit rule relies on two voting constraints. The first one concerns the rounds of voted
blocks:

(increasing-round) An honest node that voted once for 𝐵 in the past may only vote for
𝐵′ if round(𝐵) < round(𝐵′).

This voting constraint is important for quorum certificates (see Section 6). In practice, a node 𝛼 will
track the round of its latest vote in a local variable noted latest_voted_round(𝛼), and only vote
for a block 𝐵 if round(𝐵) > latest_voted_round(𝛼).

15

5.5. Second Voting Constraint: Locked Round

We define the previous round of a block 𝐵 as follows: if there exist 𝐵′ and 𝐶′ such that 𝐵′ ← 𝐶′ ← 𝐵,
we let previous_round(𝐵) = round(𝐵′); otherwise, previous_round(𝐵) = 0.

Further, we define the second-previous round of a block 𝐵 as second_previous_round(𝐵) =
round(𝐵″) if there exist 𝐵″, 𝐶″, 𝐵′ and 𝐶′ such that 𝐵″ ← 𝐶″ ← 𝐵′ ← 𝐶′ ← 𝐵, and
second_previous_round(𝐵) = 0 otherwise.

The locked round of a node 𝛼, denoted locked_round(𝛼), is the highest second-previous round
second_previous_round(𝐵) over all the blocks 𝐵 that 𝛼 ever voted for, if any, and zero other-
wise. In other words, at the beginning of an epoch, a node 𝛼 initializes the value locked_round(𝛼)
to 0 and update it to max(locked_round(𝛼), second_previous_round(𝐵)) whenever it votes for a
block 𝐵.

We can now formulate our second voting constraint:

(locked-round) An honest node 𝛼 may only vote for a block 𝐵 if it currently holds that
previous_round(𝐵) ≥ locked_round(𝛼).

The voting constraint (locked-round) was adapted from the most recent version of HotStuff [5]. In
LibraBFT, it is simplified into a single-clause condition.

5.6. Local State of a Consensus Node and Main Handler API

We can now describe the protocol followed by a LibraBFT node in terms of a local state and a handler
called by the runtime environment (Section 4.5).

Local state. As mentioned previously, the core component of the state of a node 𝛼 consists of the
current record store (Section 4.2) — denoted record_store(𝛼) — which contains all the verified
records that 𝛼 knows for its current epoch.

The state of node also includes a number of variables related to round synchronization (aka leader
election). We group them into a special object called a pacemaker and describe them in Section 7.3.

Additional state variables needed by a LibraBFT node include:

• The current epoch identifier epoch_id(𝛼), used to detect the end of the current epoch;
• The identifier of 𝛼 as an author of records, denoted local_author(𝛼);
• The round of the latest voted block latest_voted_round(𝛼), (initial value: 0);
• The locked round locked_round(𝛼), (initial value: 0); and
• The system time of the latest query-all operation latest_query_all_time(𝛼), (initial value:

the starting time of the epoch).

The variable latest_query_all_time(𝛼) above is related to liveness. It is used to trigger query-all
network actions when not enough progress is made in terms of learning new commits and new rounds,
respectively (see Section 4.3 and Section 7).

The state of a node also includes an object, called commit tracker, responsible for tracking commits
that the main handler has already processed and deciding if a query-all action is needed to recover
missing commits. We give more details about the commit tracker in Section 7.11.

Finally, the state of a node includes the record stores of all the previous epochs. Those epochs are
now stopped, meaning that no new records can be inserted.

16

Main handler API. In LibraBFT, the main handler of a consensus node consists of a single algorithm
update_node that must be called by the runtime environment on three occasions:

• Whenever the node starts or restarts after a crash;
• Whenever a data-synchronization exchange was completed (Section 4.6); and
• Regularly, at a given time scheduled by the last run of the handler itself.

The main handler reacts to the changes observed in the record store or in the clock by returning a
list of action items to be carried by the runtime environment. Specifically:

• The main handler may require that a new call to update_node be scheduled at a given time in
the future;

• It may specify that a data notification should be sent to particular nodes;
• It may ask to broadcast data notifications; and
• It may ask to pull data from every node (aka query-all action).

The implementation of the main handler is the core of the LibraBFT protocol. It is described in
detail in Section 5.7.

Rust definitions. In Rust, the local state of a node is written as follows:
struct NodeState {

/// Module dedicated to storing records for the current epoch.
record_store: RecordStoreState,
/// Module dedicated to leader election.
pacemaker: PacemakerState,
/// Current epoch.
epoch_id: EpochId,
/// Identity of this node.
local_author: Author,
/// Highest round voted so far.
latest_voted_round: Round,
/// Current locked round.
locked_round: Round,
/// Time of the latest query-all operation.
latest_query_all_time: NodeTime,
/// Track data to which the main handler has already reacted.
tracker: CommitTracker,
/// Record stores from previous epochs.
past_record_stores: HashMap<EpochId, RecordStoreState>,

}

The main handler API, update_node, is written:
trait ConsensusNode {

fn update_node(&mut self, clock: NodeTime, context: &mut SMRContext) -> NodeUpdateActions;
}

This definition assumes that the runtime environment provides the following inputs:

• The current node state (self in Rust);
• The current system time (clock); and
• A context object (context) to support SMR operations such as command execution.

Recall that the trait ConsensusNode comes in addition to the trait DataSyncNode (Section 4.6), which
provide handlers for data synchronization. The trait SMRContext is made precise in Appendix A.1.

Action items returned by the function update_node are held in the following data structure:

17

struct NodeUpdateActions {
/// Time at which to call `update_node` again, at the latest.
next_scheduled_update: NodeTime,
/// Whether we need to send a notification to a subset of nodes.
should_send: Vec<Author>,
/// Whether we need to send a notification to all other nodes.
should_broadcast: bool,
/// Whether we need to request data from all other nodes.
should_query_all: bool,

}

5.7. Main Handler Implementation

We now describe the implementation of the main handler of a LibraBFT node in Rust (Table 2).

At a high level, the main handler update_node of a LibraBFT node realizes the following operations:

• Run the pacemaker module and execute requested pacemaker actions, such as creating a timeout
or proposing a block.

• Execute and vote for a valid proposed block, if any, while respecting the two voting constraints
regarding the latest voted round (Section 5.4) and the locked round (Section 5.5).

• If the node has proposed a block and if a quorum of votes for the same state was just received,
create a quorum certificate, trigger a broadcast, and schedule a new run of update_node imme-
diately.

• Process newly found commits by calling the method process_commits (see below).
• Run the commit tracker module to update its state and decide if the node should perform a

query-all action.
• Update the time of latest query-all operation.

The main handler uses additional interfaces related to liveness and described in later sections:

• The Pacemaker trait provides a function update_pacemaker to control leader election,
timeouts, and proposals; the returned action items are processed by a method pro-
cess_pacemaker_actions; and the method proposed_block of RecordStore also uses the
pacemaker to select an active proposal that a node can vote for, if any (Section 7.3).

• The CommitTracker object provides the latest commit processed so far, as well as a method
update_tracker to update the latest epoch and commit values and return necessary action
items, notably the query-all action (Section 7.11).

Finally, the algorithm process_commits (Table 3) aims to

• deliver commits to the state machine replication context,
• check for a commit that would terminate the current epoch, and
• start a new epoch with the right parameter if needed.

This algorithm relies on the record store of a node for computing the round of the highest committed
block highest_committed_round in function of newly received data. This value is compared to the
corresponding field of the commit tracker to decide if new commits must be delivered. The method
committed_states_after takes a round 𝑚 and the record store as inputs. Assuming that the record
store contains a chain 𝐵1 ← 𝐶1 ← … ← 𝐵𝑘 ← 𝐶𝑘 such that round(𝐵1) > 𝑚 is minimal and
𝐵𝑘 is the highest committed block, the method committed_states_after returns an iterator on the
rounds and the states (round(𝐵1), state(𝐶1)), … , (round(𝐵𝑘), state(𝐶𝑘)), in this order. The highest
commit certificate highest_commit_certificate of the record store is defined as the last QC of the
commit rule of the highest committed block. (See Appendix A.2 for detailed interfaces.)

18

impl ConsensusNode for NodeState {
fn update_node(&mut self, clock: NodeTime, smr_context: &mut SMRContext) -> NodeUpdateActions {

// Update pacemaker state and process pacemaker actions (e.g., creating a timeout, proposing
// a block).
let pacemaker_actions = self.pacemaker.update_pacemaker(

self.local_author,
&self.record_store,
self.latest_query_all_time,
clock,

);
let mut actions = self.process_pacemaker_actions(pacemaker_actions, clock, smr_context);
// Vote on a valid proposal block designated by the pacemaker, if any.
if let Some((block_hash, block_round, proposer)) = self.record_store.proposed_block(&self.pacemaker) {

// Enforce voting constraints.
if block_round > self.latest_voted_round

&& self.record_store.previous_round(block_hash) >= self.locked_round
{

// Update the latest voted round.
self.latest_voted_round = block_round;
// Update the locked round.
self.locked_round =

max(self.locked_round, self.record_store.second_previous_round(block_hash));
// Try to execute the command contained the a block and create a vote.
if self.record_store.create_vote(self.local_author, block_hash, smr_context) {

// Ask to notify and send our vote to the author of the block.
actions.should_send = vec![proposer];

}
}

}
// Check if our last proposal has reached a quorum of votes and create a QC.
if self.record_store.check_for_new_quorum_certificate(self.local_author, smr_context) {

// Broadcast the QC to finish our work as a leader.
actions.should_broadcast = true;
// Schedule a new run now to process the new QC.
actions.next_scheduled_update = clock;

}
// Check for new commits and verify if we should start a new epoch.
self.process_commits(smr_context);
// Update the commit tracker and ask that we query all nodes if needed.
let tracker_actions =

self.tracker.update_tracker(self.epoch_id, self.latest_query_all_time, clock, &self.record_store);
actions.should_query_all = actions.should_query_all || tracker_actions.should_query_all;
actions.next_scheduled_update =

min(actions.next_scheduled_update, tracker_actions.next_scheduled_update);
// Update the time of the latest query-all action.
if actions.should_query_all {

self.latest_query_all_time = clock;
}
// Return desired actions to main handler.
actions

}
}

Table 2: Main handler of a LibraBFT node

19

impl NodeState {
fn process_commits(&mut self, smr_context: &mut SMRContext) {

// For all commits that have not been processed yet, according to the commit tracker..
for (round, state) in self.record_store.committed_states_after(self.tracker.highest_committed_round) {

// .. deliver the committed state to the SMR layer, together with a commit certificate,
// if any.
if round == self.record_store.highest_committed_round() {

smr_context.commit(&state, self.record_store.highest_commit_certificate())
} else {

smr_context.commit(&state, None);
};
// .. check if the current epoch just ended. If it did..
let epoch_id = smr_context.read_epoch_id(&state);
if self.epoch_id != epoch_id {

// .. create a new record store and switch to the new epoch.
self.start_new_epoch(epoch_id, &state, smr_context.configuration(&state));
// .. stop delivering commits after an epoch change.
break;

}
}

}
}

Table 3: Processing new commits

Epoch changes. As soon as a node delivers a commit QC that ends the current epoch, it stops
delivering commits for this epoch, archives its current record store, and creates a record store for the
new epoch.

We have stated safety rules for a single epoch. This formulation is sufficient to reason about safety
given that nodes only participate (e.g. vote) in the newest epoch and never roll back to an old epoch.
It is also understood that the initialization parameters of a new epoch must be uniquely determined
by the committed execution state that has created the epoch.

To ensure liveness, nodes must keep the record stores of the previous epochs available: during data
synchronization, a node must be able to follow the chain of commits and execute commands up to
the latest commit rule of the latest epoch of any sender. Technically, this means that the method
process_commits may be called, an old epoch may be stopped, and a new one started during data
synchronization (see also Section 3.1 and Section 7.12).

The chain of commits between the block containing the epoch changes and the block triggering the
commit rule may be arbitrarily long depending on network conditions. To avoid persisting data that
will not be committed, we may require leaders to propose only empty commands once an epoch
change is detected on a branch.

6. Proof of Safety

In the proof of safety, we consider the set of all records ever seen by honest nodes in the current
epoch and prove that committed blocks must form a linear chain ℎinit ← 𝐵1 ← 𝐶1 ← 𝐵2 … ← 𝐵𝑛,
starting from the initial QC hash ℎinit of the epoch.

6.1. Preliminaries

We start by recalling the proof of the classical BFT lemma:

Lemma B1: Under BFT assumption, for every two quorums of nodes in the same epoch, there
exists an honest node that belongs to both quorums.

20

Proof: Let 𝑀𝑖 ≥ 𝑁 −𝑓 (𝑖 = 1, 2) be the combined voting power of each quorum. The voting powers
𝑀 ′

𝑖 of each quorum, excluding Byzantine nodes, satisfies 𝑀 ′
𝑖 ≥ 𝑀𝑖 − 𝑓 ≥ 𝑁 − 2𝑓 . We note that if

the two sets were disjoint, the voting power of the union 𝑀 ′
1 + 𝑀 ′

2 ≥ 2𝑁 − 4𝑓 > 𝑁 − 𝑓 would exceed
the voting power of all honest nodes. Therefore, there exists an honest node in both quorums. □

Next, we prove two new lemmas. The first one concerns the chaining of records.

Lemma S1: For any records 𝑅, 𝑅0, 𝑅1, 𝑅2:

• ℎinit ←∗ 𝑅;
• If 𝑅0 ← 𝑅2 and 𝑅1 ← 𝑅2 then 𝑅0 = 𝑅1; and
• If 𝑅0 ←∗ 𝑅2, 𝑅1 ←∗ 𝑅2 and round(𝑅0) < round(𝑅1) then 𝑅0 ←∗ 𝑅1.

Proof:

• By definition of verified records (Section 4.2).
• By definition of chaining, assuming that hashing is perfectly collision resistant.
• By induction on the derivation 𝑅1 ←∗ 𝑅2, using the previous item and the fact that rounds

cannot decrease in a chain. □

The second lemma concerns the first voting rule and the notion of quorum certificates.

Lemma S2: Consider two blocks with QCs: 𝐵 ← 𝐶 and 𝐵′ ← 𝐶′. Under BFT assumption, if
round(𝐵) = round(𝐵′), then 𝐵 = 𝐵′ and state(𝐶) = state(𝐶′).
In particular, for every 𝑘 > 0, there is a unique block that has the highest round amongst the heads
of 𝑘-chains known to a node.

Proof: Under BFT assumption, there must exist an honest node that voted both for the winning
proposal state(𝐶) in 𝐶 and for state(𝐶′) in 𝐶′. By the voting rule (increasing-round), we must
have 𝐵 = 𝐵′ and state(𝐶) = state(𝐶′). □

6.2. Main Safety Argument

We say that two (distinct) records 𝑅, 𝑅′ are conflicting when neither 𝑅 ←∗ 𝑅′ nor 𝑅′ ←∗ 𝑅.

Lemma S3: Assume a 3-chain starting at round 𝑛0 and ending at round 𝑛2. Under BFT assumption,
for every certified block 𝐵 ← 𝐶 such that round(𝐵) > 𝑛2, we have that previous_round(𝐵) ≥ 𝑛0.

Proof: Let 𝐵0 ← 𝐶0 ← 𝐵1 ← 𝐶1 ← 𝐵2 ← 𝐶2 be a 3-chain starting at round 𝑛0 = round(𝐵0) and
ending at round 𝑛2 = round(𝐵2). Under BFT assumption, there exists an honest node 𝛼 whose vote
is included both in 𝐶2 (voting for 𝐵2) and 𝐶 (voting for 𝐵). Since round(𝐵) > 𝑛2, by the voting rule
(increasing-round), 𝛼 must have voted for 𝐵2 first. At that time, 𝛼 updated its locked round to be at
least second_previous_round(𝐵2) = round(𝐵0) = 𝑛0. Since the locked round never decreases, at the
later time of voting for 𝐵, the voting rule (locked-round) of 𝛼 implies that previous_round(𝐵) ≥ 𝑛0.
□

Proposition S4: Assume a 3-chain with contiguous rounds starting with a block 𝐵0 at round 𝑛0.
Under BFT assumption, for every certified block 𝐵 ← 𝐶 such that round(𝐵) ≥ 𝑛0, we have that
𝐵0 ←∗ 𝐵.

21

Proof: By induction on round(𝐵) ≥ 𝑛0. Let 𝐵0 ← 𝐶0 ← 𝐵1 ← 𝐶1 ← 𝐵2 ← 𝐶2 be a 3-chain
starting with 𝐵0 and with contiguous rounds: round(𝐵0)+2 = round(𝐵1)+1 = round(𝐵2) = 𝑛0+2.

If round(𝐵) ≤ 𝑛0 + 2, then round(𝐵) is one of the values 𝑛0, 𝑛0 + 1, 𝑛0 + 2. By Lemma S2, 𝐵 is one
of the values 𝐵0, 𝐵1, 𝐵2; therefore, 𝐵0 ←∗ 𝐵.

Otherwise, assume round(𝐵) > 𝑛0 + 2, that is, round(𝐵) > round(𝐵2). By Lemma S3, we have
previous_round(𝐵) ≥ 𝑛0. Since 𝑛0 = round(𝐵0) > 0, this means there exists a chain 𝐵3 ← 𝐶3 ← 𝐵
such that round(𝐵3) ≥ 𝑛0. Since round(𝐵3) ≥ 𝑛0 and round(𝐵3) < round(𝐵), we may apply the
induction hypothesis on 𝐵3 to deduce that 𝐵0 ←∗ 𝐵3. Therefore, 𝐵0 ←∗ 𝐵3 ←∗ 𝐵 concludes the
proof. □

Theorem S5 (Safety): Under BFT assumption, two blocks that match the commit rule cannot be
conflicting.

Proof: Consider the commit rules of two blocks 𝐵0 and 𝐵′
0 that match the commit rule: 𝐵0 ←

𝐶0 ← 𝐵1 ← 𝐶1 ← 𝐵2 ← 𝐶2 and 𝐵′
0 ← 𝐶′

0 ← 𝐵′
1 ← 𝐶′

1 ← 𝐵′
2 ← 𝐶′

2 (with contiguous rounds in both
cases). Without loss of generality, we may assume that round(𝐵′

0) ≥ round(𝐵0). By Proposition S4,
this implies 𝐵0 ←∗ 𝐵′

0. □

Corollary S6: Under BFT assumption, the set of all commits seen by any honest node since the
beginning of the current epoch form a linear chain ℎinit ← 𝐵1 ← 𝐶1 ← 𝐵2 … ← 𝐵𝑛.

Proof: Using Theorem S5, by induction on the number of commits. □

7. Liveness Mechanisms of LibraBFT

LibraBFT follows the example of HotStuff [5] and delegates round synchronization (including leader
election and the decision when to enter a new round) to a special module called a pacemaker. We now
describe the pacemaker of LibraBFT in detail, as well as the policies for re-sharing records, cleaning
the record store, and tracking commits to decide additional query-all operations. These mechanisms
are all crucial for liveness, as we will see in the proofs of Section 8.

7.1. Timeout certificates.

We define a Timeout Certificate (TC) as a set of timeout objects at the same round 𝑛, each created
by a distinct author, such that the set of timeout authors form a quorum (Section 2.3). The round
of a timeout certificate is the common round value 𝑛.

Intuitively, TCs are to timeout objects what QCs are to votes. However, TCs are neither materialized
as records nor chained in the record store.

7.2. Overview of the Pacemaker

When a node enters a new round 𝑛, it computes the leader and the maximal duration of that round
using two predefined functions leader(𝑛𝑐, 𝑛) and duration(𝑛𝑐, 𝑛). These functions take as input the
round number 𝑛 and the latest commit round known 𝑛𝑐 to the node at the time they are invoked
(Sections 7.5 and 7.7).

A consensus node enters a round 𝑛 whenever it receives a QC at round 𝑛 − 1, or enough timeouts to
form a TC at round 𝑛 − 1, whichever comes first. The round 𝑛 is then considered active until the

22

node3

node2

node1

node0

round 1
(leader: node3)

round 2
(leader: node0)

round 3
(leader: node1)

B1 C1 B2 C2 B3 C3

1 2 3 1 2 3 1 2 30 00

{V1,V2,V3}{V1,V2} {V1,V2,V3}

Figure 4: Successful rounds in LibraBFT (notifications to the new leader added in green)

node3

node2

node1

node0

round 1
(leader: node3)

round 2
(crashed leader: node0)

round 3
(leader: node1)

B1 C1 B3 C3

1 2 3 1 2 30 00

{T1,T2,T3}

4

{V1,V2} {V0,V2,V3}

Figure 5: A failed round in LibraBFT (timeouts added in red)

node enters round 𝑛 + 1. While a node has active round 𝑛, it may only vote for a block at round 𝑛
authored by the leader of round 𝑛.

To achieve liveness despite malicious or unresponsive leaders, nodes start a timer when they enter a
round and verify that the elapsed time has not passed the current maximum duration of the round
(see Figure 5). New timeout objects are broadcast immediately (4). Once enough timeouts have
been shared, a node will observe a TC and change their active round — that is, unless the node
learned a QC first, which also updates the active round.

Importantly, when a node enters a round, it must send its highest QC and TC to the new leader,
in case the leader was not aware of the new data yet (0 in Figure 4). A leader must re-share
immediately its highest TC or QC when it enters its own round, together with a new proposed block
(1). Under GST assumptions, this guarantees that a leader node can propose not long after the first
honest node entered its round. The fact that such a proposed block can provably meet the second
voting constraint of each honest node is an important aspect of LibraBFT discussed in Section 8.3.

To keep communication complexity linear in the normal mode of operation, non-leader nodes may
only trigger broadcast and query-all actions after some delay, in specific cases:

• A node executes a broadcast action whenever a round times out;
• After a round has timed out, a node triggers query-all actions periodically as long as its active

round stays the same.
• A node also triggers query-all actions periodically when its highest known commit stays the

same for too long.

23

The first mechanism lets nodes share their timeouts and form TCs in case the current leader is
unresponsive. The second mechanism ensures that nodes eventually recover TCs and QCs that they
may have missed due to malicious nodes or bad network conditions. Similarly, the third mechanism
ensures that nodes eventually recover all commits. The set of records that sending nodes are required
to re-share during network interactions is made precise in Section 7.12.

7.3. Pacemaker State and Update API

Visible pacemaker state. The pacemaker module is in charge of driving round synchronization. It
exposes two state values to the other components of a LibraBFT node:

• The current active round, denoted active_round(𝛼), (initial value: 0);
• The leader of the current round, denoted active_leader(𝛼), (initial value: ⊥).

Notably, these two values are accessed by the method proposed_block, called in the main handler
(Section 5.7). This ensures that a node 𝛼 may only vote for a block 𝐵 that satisfies round(𝐵) =
active_round(𝛼) and author(𝐵) = active_leader(𝛼).
The rest of the pacemaker state will be described in Section 7.9.

Pacemaker update API. The pacemaker module exposes a method update_pacemaker meant to be
called by the higher-level method update_node. This method refreshes the state of the pacemaker
and return a list of action items for the main handler of a node to process.

Action items returned by update_pacemaker are similar to the action items returned by update_node,
augmented with the two internal action items:

• The pacemaker may instruct the node to create a timeout object for the given round. In this
case, the node should update latest_voted_round(𝛼) so that no vote can be further created
at the same round (see Section 8.3 for a justification).

• The pacemaker may require that the node act as the leader and propose a new block.

Rust definitions. The Rust trait for a pacemaker module is written as follows:
trait Pacemaker {

/// Update our state from the given data and return some action items.
fn update_pacemaker(

&mut self,
// Identity of this node.
local_author: Author,
// Known records.
record_store: &RecordStore,
// Local time of the latest query-all by us.
latest_query_all: NodeTime,
// Current local time.
clock: NodeTime,

) -> PacemakerUpdateActions;

/// Current active round and current leader.
fn active_round(&self) -> Round;
fn active_leader(&self) -> Option<Author>;

}

The parameters passed to update_pacemaker were described previously in the main handler up-
date_node (Table 2).

The pacemaker action items returned by update_pacemaker can be described as follows:

24

struct PacemakerUpdateActions {
/// Whether to propose a block and on top of which QC hash.
should_propose_block: Option<QuorumCertificateHash>,
/// Whether we should create a timeout object for the given round.
should_create_timeout: Option<Round>,
/// Whether we need to send our records to a subset of nodes.
should_send: Vec<Author>,
/// Whether we need to broadcast data to all other nodes.
should_broadcast: bool,
/// Whether we need to request data from all other nodes.
should_query_all: bool,
/// Time at which to call `update_pacemaker` again, at the latest.
next_scheduled_update: NodeTime,

}

These action items are interpreted by update_node and turned into node action items as follows:
impl NodeState {

fn process_pacemaker_actions(
&mut self,
pacemaker_actions: PacemakerUpdateActions,
clock: NodeTime,
smr_context: &mut SMRContext,

) -> NodeUpdateActions {
let mut actions = NodeUpdateActions::new();
actions.next_scheduled_update = pacemaker_actions.next_scheduled_update;
actions.should_broadcast = pacemaker_actions.should_broadcast;
actions.should_query_all = pacemaker_actions.should_query_all;
actions.should_send = pacemaker_actions.should_send;
if let Some(round) = pacemaker_actions.should_create_timeout {

self.record_store.create_timeout(self.local_author, round, smr_context);
// Prevent voting at a round for which we have created a timeout already.
self.latest_voted_round.max_update(round);

}
if let Some(previous_qc_hash) = pacemaker_actions.should_propose_block {

self.record_store.propose_block(self.local_author, previous_qc_hash, clock, smr_context);
}
actions

}
}

7.4. Functions Based on the Highest Commit Round

We define the leader and the maximum duration of each round 𝑛 as a function of 𝑛 and some additional
parameters that depend on the latest commit known to a node.

Given a commit round 𝑛𝑐, Lemma S2 shows that there is no ambiguity across honest nodes regarding
the committed block 𝐵𝑐 and the execution state state(𝐶𝑐) defined by round(𝐵𝑐) = 𝑛𝑐 and 𝐵𝑐 ←
𝐶𝑐.

In the following, we will write 𝑓(𝑛𝑐, 𝑛) whenever a function 𝑓 depends on a round number 𝑛 > 𝑛𝑐 + 2
and possibly additional parameters deduced from the chain of committed blocks ending with 𝐵𝑐, as
well as the corresponding execution state state(𝐶𝑐).
We note that such a function 𝑓(𝑛𝑐, 𝑛) cannot depend on the other fields of the quorum certificate 𝐶𝑐
because there is no agreement on these values until the next block is committed.

7.5. Prerequisite: Assigning Leaders to Rounds

Given a suitable record store, a highest commit round 𝑛𝑐, and a round 𝑛 > 𝑛𝑐 + 2, we assume an
algorithm leader(𝑛𝑐, 𝑛) to select the leader of round 𝑛.

The exact choice of a selection function leader(𝑛𝑐, 𝑛) may affect concrete latency bounds of the
liveness theorem (Theorem L9) and is left for future work. As a starting point, one may require a

25

statistically fair selection in the sense that the frequency of each sequence of 𝑘 leaders (𝑎1, … , 𝑎𝑘) is
proportional to the product of the voting rights of each author 𝑎𝑖.

Concretely, assuming equal voting rights, a simple approach is to let leader(𝑛𝑐, 𝑛) = author(hash(𝑛)
mod 𝑁), where 𝑁 is the number of nodes. However, this lets anyone predict leaders a long time in
advance. This is problematic as it facilitates the preparation of targeted attacks on leaders.

We also note that depending on 𝑛𝑐 in a naive way is not possible because of grinding attacks — a
leader at round 𝑛 could try to select transactions, or votes, so that leader(𝑛, 𝑛′) (𝑛′ > 𝑛 + 2) points
to a particular node once 𝑛 is the highest commit round.

To mitigate both risks, we intend to use a verifiable random function (VRF) [40] in the future. If
the certified block at round 𝑛𝑐 contains some seed 𝑠 = VRFauthor(𝑛𝑐)(epoch_id || round(𝑛𝑐)), then we
may define leader(𝑛𝑐, 𝑛) = author(PRF𝑠(𝑛) mod 𝑁) where PRF stands for the implementation of a
pseudo-random function.

7.6. Prerequisite: Target Commit Interval

We assume a time delay 𝐼 > 0. When a node observes no new commits, we expect it to trigger a
query-all action at least once per period 𝐼 . The shorter the delay, the more responsive the protocol
will be when a period of asynchronous network ends or when nodes disagree on the latest commit
due to a dishonest leader.

7.7. Prerequisite: Assigning Durations to Rounds

We assume that every node can compute some values Δ(𝑛𝑐) > 0 and 𝛾(𝑛𝑐) > 0 in function of available
data in the chain of records ending with the commit round 𝑛𝑐.

• Δ(𝑛𝑐) represents the amount of time available for the first block proposer on top of 𝑛𝑐.
• 𝛾(𝑛𝑐) is the exponent used to increase the time for subsequent proposers.

We define a sequence of maximum duration for each 𝑛 > 𝑛𝑐 + 2:

duration(𝑛𝑐, 𝑛) = Δ(𝑛𝑐) ⋅ (𝑛 − 𝑛𝑐 − 2)𝛾(𝑛𝑐)

We make the following observations:

• For the first round after the commit rule, duration(𝑛𝑐, 𝑛𝑐 + 3) = Δ(𝑛𝑐).
• Since as Δ(𝑛𝑐) > 0 and 𝛾(𝑛𝑐) > 0, when 𝑛 grows, duration(𝑛𝑐, 𝑛) keeps increasing and is not

bounded.
• As far as theoretical liveness is concerned, duration coefficients could be fixed: Δ(𝑛𝑐) = Δ > 0

and 𝛾(𝑛𝑐) = 𝛾 > 0 (for instance 𝛾 = 2). We adopt this simplified convention in the subsequent
code examples. However, we expect practical performance to depend on more meaningful values.

26

7.8. Prerequisite: Periodic Query-all after Timeouts

Finally, in addition to the previous parameters, we assume that every node can compute a value
𝜆(𝑛𝑐) > 0. Once a round 𝑛 has reached its maximal duration, in addition to creating a timeout
object, a node will periodically execute a query-all action until it exits round 𝑛. The period of the
query-all action is given by the formula period(𝑛𝑐, 𝑛) = 𝜆(𝑛𝑐) ⋅ duration(𝑛𝑐, 𝑛).
In practice, we may choose 𝜆(𝑛𝑐) = 𝜆 < 1. For instance, 𝜆 = 1

2 means that the period of query-all
actions is half of the maximal duration of the round.

7.9. Pacemaker State

We may now complete the specifications of the pacemaker state:
struct PacemakerState {

/// Active round.
active_round: Round,
/// Leader of the active round.
active_leader: Option<Author>,
/// Time at which we entered the round.
active_round_start_time: NodeTime,
/// Maximal duration of the current round.
active_round_duration: Duration,
/// Maximal duration of the first round after a commit rule.
delta: Duration,
/// Exponent to increase round durations.
gamma: f64,
/// Coefficient to control the frequency of query-all actions.
lambda: f64,

}

For simplicity, we have omitted the potential dependency to 𝑛𝑐 for the parameters Δ(𝑛𝑐), 𝛾(𝑛𝑐),
𝜆(𝑛𝑐) mentioned previously.

7.10. Pacemaker Update Handler

We now describe the implementation of the pacemaker update function seen in Section 7.3 using Rust
(Table 4).

The algorithm computes a set of actions to be interpreted by the node as follows:

• After initializing actions with default values, the current active round active_round(𝛼) is set
to 𝑘 + 1, where 𝑘 is the maximum value between:

– The highest round of a quorum certificate (QC) in record_store(𝛼), if any;
– The highest round of a timeout certificate (TC) in record_store(𝛼), if any; and
– 0 = round(ℎinit).

• If active_round(𝛼) was just changed above:

– Start a timer to track the duration of the round;
– Set the current active leader active_leader(𝛼) to leader(𝑛𝑐, active_round(𝛼)).
– Set the current maximal duration active_round_duration(𝛼) to duration(𝑛𝑐, active_round(𝛼)).
– If we are not the leader, notify the new leader active_leader(𝛼).

• If we are leader (i.e. active_leader(𝛼) points to local_author(𝛼)) and have not proposed yet,
then request that the node fetch a command and propose a block. Also, force a re-evaluation
of the main handler so that we vote on our proposal immediately.

27

• If the current active round has exceeded its maximum duration and we have not created a
timeout yet, then request the creation of a timeout at round active_round(𝛼) and request a
broadcast.

• After timeout, if we have not changed the active round or realized a query-all action in an
interval of time 𝜆(𝑛𝑐) ⋅ 𝐷 — where 𝐷 is the maximal duration of the current round used above

— then request a new query-all action.
• Finally, reschedule a run of the main handler (hence this function) to the next time where we

may have to create a timeout or request a query-all action.

7.11. Commit tracker

While the Pacemaker abstraction is responsible for driving the creation of blocks and QCs, the
commit-tracker abstraction is used to track new commits and new epochs (Section 5.7). Specifically,
the state of a commit tracker contains the latest processed epoch, the latest processed commit round,
and the time of the latest processed commit.

The update function of the commit tracker aims to update its state as expected and enforce periodic
query-all actions when no new commit is observed for a sufficiently long time (Section 7.6). We write
target_commit_interval for the interval constant previously denoted 𝐼 .

The logic of the commit tracker is described using Rust in Table 5.

7.12. Synchronizing and Cleaning Records

We have sketched the requirements for the data-synchronization protocol between nodes in a previous
section (Section 4.4). We are now making more precise the minimal amount of data that a sending
node must re-share during a data-synchronization exchange.

Whenever a node 𝛼 synchronizes with an honest sender 𝛼0, we expect that:

(sync-epoch) The current epoch of 𝛼 after synchronization is at least as recent as the
one of 𝛼0.

Besides, whenever 𝛼 and 𝛼0 share the same epoch at the end of the synchronization (the usual case),
we expect the following properties to hold:

(sync-commits) The highest commit known to 𝛼 after synchronization is at least as
high as the one of 𝛼0.

(sync-QCs) The highest QC known to 𝛼 after synchronization is at least as high as the
one of 𝛼0.

(sync-TCs) If 𝛼0 knows a TC at a higher round than the highest QC of 𝛼, then the
highest TC known to 𝛼 after synchronization is at least as high as the highest TC of 𝛼0.

(sync-timeouts) If 𝛼0 knows timeouts at its current active round, then 𝛼 receives these
timeouts.

(sync-block) If 𝛼0 proposed a block for the first time as a leader, then 𝛼 receives this
block and learns the chain of previous blocks and QCs required to verify this block.

(sync-vote) If 𝛼0 just voted for a block proposed by 𝛼 as a leader, then 𝛼 receives this
vote.

28

fn update_pacemaker(
&mut self,
local_author: Author,
record_store: &RecordStore,
latest_query_all_time: NodeTime,
clock: NodeTime,

) -> PacemakerUpdateActions {
// Initialize actions with default values.
let mut actions = PacemakerUpdateActions::new();
// Recompute the active round.
let active_round = max(

record_store.highest_quorum_certificate_round(),
record_store.highest_timeout_certificate_round(),

) + 1;
// If the active round was just updated..
if active_round > self.active_round {

// .. store the new value
self.active_round = active_round;
// .. start a timer
self.active_round_start_time = clock;
// .. compute the leader
self.active_leader = Some(Self::leader(record_store, active_round));
// .. compute the duration
self.active_round_duration = self.duration(record_store, active_round);
// .. synchronize with the leader.
if self.active_leader != Some(local_author) {

actions.should_send = self.active_leader.into_iter().collect();
}

}
// If we are the leader and have not proposed yet..
if self.active_leader == Some(local_author) && record_store.proposed_block(&*self) == None {

// .. propose a block on top of the highest QC that we know.
actions.should_propose_block = Some(record_store.highest_quorum_certificate_hash());
actions.should_broadcast = true;
// .. force an immediate update to vote on our own proposal.
actions.next_scheduled_update = clock;

}
if !record_store.has_timeout(local_author, active_round) {

let timeout_deadline = self.active_round_start_time + self.active_round_duration;
// If we have not created a timeout yet, check if the round has passed its maximal
// duration. Then, either broadcast a new timeout now, or schedule an update
// in the future.
if clock >= timeout_deadline {

actions.should_create_timeout = Some(active_round);
actions.should_broadcast = true;

} else {
actions.next_scheduled_update =

min(actions.next_scheduled_update, timeout_deadline);
}

} else {
// Otherwise, enforce frequent query-all actions if we stay too long on the same round.
let period = (self.lambda * self.active_round_duration as f64) as i64;
let mut query_all_deadline = latest_query_all_time + period;
if clock >= query_all_deadline {

actions.should_query_all = true;
query_all_deadline = clock + period;

}
actions.next_scheduled_update = min(actions.next_scheduled_update, query_all_deadline);

}
// Return all computed actions.
actions

}

Table 4: Update function of the pacemaker

29

struct CommitTracker {
/// Latest epoch identifier that was processed.
epoch_id: EpochId,
/// Round of the latest commit that was processed.
highest_committed_round: Round,
/// Time of the latest commit that was processed.
latest_commit_time: NodeTime,
/// Minimal interval between query-all actions when no commit happens.
target_commit_interval: Duration,

}

struct CommitTrackerUpdateActions {
/// Time at which to call `update_node` again, at the latest.
next_scheduled_update: NodeTime,
/// Whether we need to query all other nodes.
should_query_all: bool,

}

impl CommitTracker {
fn update_tracker(

&mut self,
epoch_id: EpochId,
latest_query_all_time: NodeTime,
clock: NodeTime,
record_store: &RecordStore,

) -> CommitTrackerUpdateActions {
let mut actions = CommitTrackerUpdateActions::new();
// Update tracked values: epoch, round, and time of the latest commit.
if epoch_id != self.epoch_id {

self.epoch_id = epoch_id;
self.highest_committed_round = Round(0);
self.latest_commit_time = clock;

}
let highest_committed_round = record_store.highest_committed_round();
if highest_committed_round > self.highest_committed_round {

self.highest_committed_round = highest_committed_round;
self.latest_commit_time = clock;

}
// Decide if too much time passed since the latest commit or the latest query-all action.
let mut deadline = max(self.latest_commit_time, latest_query_all_time) + self.target_commit_interval;
if clock >= deadline {

// If yes, trigger a query-all action.
actions.should_query_all = true;
deadline = clock + self.target_commit_interval;

}
// Schedule the next update.
actions.next_scheduled_update = deadline;
// Return desired actions to main handler.
actions

}
}

Table 5: State, actions, and update function of the commit tracker

30

Regarding the property (sync-epoch), the data-synchronization exchange between the two nodes
relies on the past record stores of 𝛼0 (Section 5.6) so that 𝛼 can follow the chains of commits and
the commit rules of all the epochs known to 𝛼0. Commits from past epochs are delivered during
data synchronization using the method process_commits introduced in Table 3. A solution for data
synchronization is sketched in Appendix A.3.

Record cleanups. The requirements above condition which data can be cleaned from the record store
of receiving nodes after an update.

• We define the current round of the record store to be one plus the round of the highest QC or
TC in the store.

• In terms of QCs and blocks with QCs, the record store only needs to keep the two chains ending
with the highest QC and the last QC of the latest commit rule.

• In terms of blocks without QCs, only one proposal at the current round is needed.
• In terms of votes, if we just proposed a block at the current round, only the votes at the current

round are needed; otherwise, only one vote authored by us at the current round is needed.
• In terms of timeouts, only the timeouts at the current active round are needed, together with

one set of timeouts that form a TC at the current round minus one, if any such TC exists.

Note that the current round of the record store becomes the active round of the node only after
the main handler is called and update_pacemaker has started its timer. We sketch in-memory data-
structures for the record store in Appendix A.2.

8. Proof of Liveness

We now consider the liveness of the LibraBFT protocol. We argue that the liveness mechanisms
described in Section 7 ensure that commits are being produced in a timely manner whenever the
network becomes synchronous.

Without loss of generality, we assume that the current epoch continues indefinitely. We will also rely
on the fact that after GST, network and nodes are responsive; hence, we only take into account net-
work propagation delays. Note that we address only the question of chain growth. How transactions
are picked — aka fairness — is left for future work (see previous note in Section 3.3).

8.1. Active Rounds

In the following, we use maximum active round to refer to the maximum active round between honest
nodes at a given time. Recall that the set of honest nodes is unknown to the participants, yet stays
the same during an epoch.

Next, we prove that active rounds are always increasing over time or when nodes synchronize with
each other.

Lemma L1: If a node changes its active round from 𝑛 to 𝑛′, then 𝑛 < 𝑛′.

Proof: By construction, discarding records (Section 5.7) never decreases the rounds of the high-
est QC and TC in the record store of a node. Therefore, given the definition of the method up-
date_pacemaker (Section 7.10), any change in the active round must result from a higher QC or a
higher TC. □

Lemma L2: If a node 𝛼 has synchronized with a node of active round 𝑛 in the past, then the active
round of 𝛼 is at least 𝑛.

31

Proof: This is a consequence of Lemma L1 and the properties of data synchronization (sync-QCs)
and (sync-TCs). □

Lemma L3: Assume that the maximum active round amongst honest nodes changes from 𝑛 to 𝑛′,
then 𝑛′ = 𝑛 + 1.

Proof: We have seen with Lemma L1 that the maximum active round cannot decrease. While the
maximum active round is 𝑛, honest nodes can only vote for blocks or sign timeout objects at round
lower or equal than 𝑛. The voting power necessary to produce a QC or a TC requires at least one
honest node to collaborate; therefore, no QC or TC at a round greater than 𝑛 can be produced.
Given the definition of the method update_pacemaker (Section 7.10), this implies 𝑛′ ≤ 𝑛 + 1. □

Note:

• Since active rounds do not decrease by Lemma L1, the definition of the method proposed_block
used by the main handler (Section 7.3) implies that the first voting constraint (Section 5.4) is
always fulfilled the first time that a node wishes to vote on a proposal at a given round.

• The fact that maximum active round increases sequentially is very important for the liveness
argument. In particular, given that leaders are predictable until a new commit is produced, we
must not allow malicious nodes and the network to cause a round to be skipped.

• Assuming that nodes agree on the highest commit round 𝑛𝑐, a similar argument as in the
proof of Lemma L3 shows that the maximum active round 𝑛 will stay the same for at least a
time duration(𝑛𝑐, 𝑛) unless a new commit is produced, or the leader at round 𝑛 successfully
produces a QC sooner.

8.2. Synchronization of Active Rounds

In the previous section, we discussed necessary conditions for the maximum active round to change.
We now aim at sufficient conditions for the minimum active round between honest nodes to increase.
Note that by Lemma L1, the minimum active round never decreases.

Let 𝑛 be the minimum active round at time 𝑡. We say that the system is stabilized at time 𝑡 if the
following conditions hold:

(i) There exists a round 𝑛𝑐 and a time 𝑡𝑐 < 𝑡 such that all honest nodes have had the same highest
commit round 𝑛𝑐 at least since 𝑡𝑐 and until 𝑡.

(ii) Every honest node that entered an active round greater than 𝑛 did it only after 𝑡𝑐.

(iii) Every honest node that created a timeout for its current active round 𝑛 either did it after 𝑡𝑐,
or has shared it at least once with every other honest node after 𝑡𝑐.

We start by showing that stabilization persists as long as no commit is produced after GST.

Proposition L4: Assume that all the honest nodes have the same highest commit round 𝑛𝑐 at time
𝑡 > 𝐺𝑆𝑇 and at least until time 𝑡′ > 𝑡. If the system is stabilized at time 𝑡, then it is stabilized at
time 𝑡′.

32

Proof: Conditions (i), (ii), and (iii) at time 𝑡′ follows from the same condition at time 𝑡, Lemma
L1, and the fact that 𝑡′ > 𝑡 > 𝑡𝑐. □

Let 𝛿 be the maximum time taken by a data-synchronization exchange between two nodes after GST
(Section 2.5). Next, we provide sufficient conditions for a system to become stabilized.

Lemma L5: Assume that all the honest nodes have the same highest commit round 𝑛𝑐 at time 𝑡
and at least until time 𝑡′ = 𝑡 + 2 𝛿. Assume that leader(𝑛𝑐, 𝑛) is honest and duration(𝑛𝑐, 𝑛) > 𝛿. If
an honest node 𝛼 first switches to a new maximum active round 𝑛 at time 𝑡, then we have that:

• By time 𝑡 + 𝛿, the leader of round 𝑛 has entered its own round.
• By time 𝑡′ = 𝑡 + 2 𝛿, every node has received a new proposed block by the leader of round 𝑛,

and the system is stabilized with minimum active round at least 𝑛.

Proof: We prove that every honest node has an active round at least 𝑛 at time 𝑡′. Since active
rounds are always increasing (Lemma L1) and 𝑡 > 𝐺𝑆𝑇 , conditions (i), (ii), and (iii) at time 𝑡′ will
immediately follow from the maximality of 𝑛, with 𝑡𝑐 = 𝑡.
Given the definition of the method update_pacemaker (Section 7.10), 𝛼 switches round at time 𝑡
because it learned a QC or a TC at round 𝑛 − 1, and it will immediately notify the leader of the
new round. Under GST assumptions, by time 𝑡 + 𝛿, the honest leader of round 𝑛 will receive such a
notification for the first time. When it does, the maximality of 𝑛 and the constraint duration(𝑛𝑐, 𝑛) >
𝛿 guarantees that no TC or QC at round 𝑛 exists yet (see Lemma L3 and the following note). This
means that between times 𝑡 and 𝑡 + 𝛿, the leader of round 𝑛 will learn a QC or TC at round 𝑛 − 1
and enter round 𝑛 (exactly). By definition of the pacemaker (Section 7.10), the honest leader will
broadcast a new proposed block at round 𝑛 together with the QC or TC at round 𝑛 − 1. This will
bring all honest nodes to an active round at least 𝑛 by time 𝑡′ = 𝑡 + 2 𝛿. □

Note: In the conditions of Lemma L5, if additionally duration(𝑛𝑐, 𝑛) > 2 𝛿, we observe that no
timeout at round 𝑛 can be created between time 𝑡 and 𝑡 + 2 𝛿. Therefore, all honest nodes will switch
exactly to the round 𝑛 and proceed to vote on the proposal unless a new commit is produced or the
leader of round 𝑛 produces a QC before 𝑡 + 2 𝛿.

Lemma L6: Assume that all the honest nodes have the same highest commit round 𝑛𝑐 at time
𝑡 > 𝐺𝑆𝑇 and at least until time 𝑡′ = 𝑡 + 𝐼 + 𝛿, where 𝑛 is the maximum active round between honest
nodes at time 𝑡. Then, at time 𝑡′, the system is stabilized with a minimum active round at least 𝑛.

Proof: By definition of the target commit interval 𝐼 (Section 7.6) and given that the highest commit
round 𝑛𝑐 is shared and constant, every honest node must trigger a query-all action between times
𝑡 and 𝑡 + 𝐼 . In particular, a node with the maximum active round 𝑛 at time 𝑡 will answer queries
from every other honest node and provide them with a TC or a QC at round 𝑛 − 1 before 𝑡 + 𝐼 + 𝛿.
Similarly, any potential timeout object created before time 𝑡 will be shared with every other honest
node. We deduce that condition (i), (ii), and (iii) hold at time 𝑡′ and that the minimum active round
𝑛0 at time 𝑡′ satisfies 𝑛0 ≥ 𝑛. □

Proposition L7: Assume that all the honest nodes have the same highest commit round 𝑛𝑐 at
time 𝑡 > 𝐺𝑆𝑇 and at least until time 𝑡′ = 𝑡 + (1 + 𝜆(𝑛𝑐)) ⋅ duration(𝑛𝑐, 𝑛) + 𝛿, where 𝑛 is the
minimum active round between honest nodes at time 𝑡. Then, at time 𝑡′, the system is stabilized
with a minimum active round at least 𝑛 + 1.

33

Proof: By Proposition L4, the system is stabilized at time 𝑡′, thus we only need to prove the lower
bound on the minimum active round.

Given the definition of the method update_pacemaker (Section 7.10), every honest node that stays
at round 𝑛 must

• create a timeout at round 𝑛 after duration(𝑛𝑐, 𝑛) time if it has not already,
• after a timeout was created, execute a query-all communication step at least once per period

period(𝑛𝑐, 𝑛) = 𝜆(𝑛𝑐) duration(𝑛𝑐, 𝑛).

If an honest node has switched to a round greater than 𝑛 by time 𝑡+duration(𝑛𝑐, 𝑛), then by time 𝑡′,
every node still at round 𝑛 will have executed a query-all step and reached a round 𝑛+1 or greater.

Otherwise, we may assume that every honest node has an active round equal to 𝑛 until time 𝑡 +
duration(𝑛𝑐, 𝑛). By this time, every honest node will have created a timeout object for round 𝑛.
Given condition (iii), such timeout objects were either created after 𝑡𝑐 and broadcast immediately,
or created earlier but broadcast at least once after 𝑡𝑐. Given the GST assumptions, by time 𝑡 +
duration(𝑛𝑐, 𝑛) + 𝛿, every honest node will have learned enough old and new timeouts to form a TC
at round 𝑛, thus switching to the next active round 𝑛 + 1 or greater. □

8.3. Optimistic Responsiveness

Following the authors of the original HotStuff [5], we prove an important property for the liveness of
the protocol called “Optimistic Responsiveness.”

Proposition L8 (Optimistic Responsiveness): Assume that a quorum of nodes (𝛼) communi-
cated their highest 1-chains to a proposer at times (𝑡𝛼). Let 𝐵 ← 𝐶 be the highest 1-chain amongst
all those communicated. If such a node 𝛼 is honest, we further assume that it has not voted on
any proposal since 𝑡𝛼. Then, under BFT assumption, any proposal 𝐵′ such that 𝐵 ← 𝐶 ← 𝐵′ is
compatible with the voting rule (locked-round) of any honest node.

Proof: Let 𝑛0 be the current locked round of an honest node 𝛼0. By definition of the locked round,
𝛼0 once knew a 2-chain 𝐵0 ← 𝐶0 ← 𝐵1 ← 𝐶1 such that round(𝐵0) = 𝑛0. Under BFT assumption,
there exists an honest node 𝛼 that voted for 𝐵1 a time 𝑡0 and communicated its highest 1-chain at time
𝑡𝛼. Since 𝛼 has not voted since 𝑡𝛼, we have 𝑡0 ≤ 𝑡𝛼. At time 𝑡0, 𝛼 knew the 1-chain 𝐵0 ← 𝐶0. Since
its highest 1-chain at later time 𝑡𝛼 is not higher than 𝐵 and the round of the highest 1-chain in the
record store of node never decreases (see record cleanups in Section 7.12), we deduce 𝑛0 ≤ round(𝐵).
Therefore, 𝛼0 can vote for 𝐵′ according to the voting rule (locked-round). □

Application. In the formalism of LibraBFT, we deduce that a leader at round 𝑛 may propose a block
as soon as it enters the round 𝑛. Indeed, entering round 𝑛 is caused by a QC at round 𝑛 − 1 or a TC
at round 𝑛 − 1.

• In the case of QC at round 𝑛 − 1, we know that a quorum of nodes 𝛼 (if honest) knew no QC
higher than round 𝑛 − 2 at the times 𝑡𝛼 where they voted for a block at round 𝑛 − 1.

• In the case of TC at round 𝑛 − 1, we know that a quorum of nodes 𝛼 (if honest) had
round 𝑛 − 1 and each of them had the highest QC round given by the field high-
est_certified_block_round of the timeout at time 𝑡𝛼 where they created their timeout
object. Since the leader at round 𝑛 accepted their timeout object as valid (Section 4.2), it must
know a QC at least as high as the field highest_certified_block_round.

In both cases, honest nodes will not vote again until they enter the round 𝑛, then receive a proposal
from the leader (see the voting rules (increasing-round) and the processing of pacemaker updates
Section 7.3). Therefore, Proposition L8 always apply whenever an honest leader proposes a block.

34

8.4. Main Proof

In the following, we use commit round to refer to the round of the highest committed block of a
node. We define the minimum commit round and the maximum commit round, respectively, as the
minimum and maximum commit rounds over all honest nodes at a given time. As before, we write 𝛿
for the maximum delay for one data-synchronization exchange after GST (Section 2.5).

Theorem L9 (Liveness): Let 𝑛𝑐 be the minimum commit round at a time 𝑡0 > 𝐺𝑆𝑇 and 𝑛0 be
the maximum active round at time 𝑡0. Let 𝑛 > 𝑛0 be such that leader(𝑛𝑐, 𝑛), leader(𝑛𝑐, 𝑛 + 1),
and leader(𝑛𝑐, 𝑛 + 2) are honest and such that duration(𝑛𝑐, 𝑛) > 4 𝛿. Then, the minimum commit
round is greater than 𝑛𝑐 at time

𝑡 = 𝑡0 + 2 𝐼 + (𝑛 − 𝑛0 + 11) 𝛿 +
𝑛−1
∑

𝑘=𝑛0

(1 + 𝜆(𝑛𝑐)) ⋅ duration(𝑛𝑐, 𝑘)

Proof: Let 𝑡′ = 𝑡 − 𝐼 − 𝛿. We note that 𝑡′ ≥ 𝑡0 > 𝐺𝑆𝑇 . Assume that there exists a node 𝛼 with
an unchanged commit round 𝑛𝑐 at time 𝑡. The policy on target commit interval (Section 7.6) entails
that 𝛼 executes at least one a query-all action between time 𝑡′ and 𝑡′ + 𝐼 = 𝑡 − 𝛿. If the highest
commit round at time 𝑡′ is higher than 𝑛𝑐, under GST assumptions, 𝛼 will learn this commit round
by time 𝑡′ + 𝐼 + 𝛿 = 𝑡, contradiction.

Therefore, we may safely assume that all the honest nodes have the same commit round 𝑛𝑐 from
time 𝑡0 to 𝑡′. During this interval, this means every honest node agrees on the leader and the
duration of each round. By Lemma L6 and Proposition L4, the system is stabilized starting from
time 𝑡1 = 𝑡0 + 𝐼 + 𝛿 until 𝑡′, and the minimum active round at time 𝑡1 is at least 𝑛0.

By applying Proposition L7 repeatedly, the minimum active round at time 𝑡′
1 = 𝑡1 + (𝑛 − 𝑛0) 𝛿 +

∑𝑛−1
𝑘=𝑛0

(1 + 𝜆(𝑛𝑐)) ⋅ duration(𝑛𝑐, 𝑘) is at least 𝑛. By Lemma L3, the maximum active rounds on and
after 𝑡0 follow the sequence of values 𝑛0, 𝑛0 + 1, 𝑛0 + 2, etc. Therefore, there exists a time 𝑡2 with
𝑡0 < 𝑡2 ≤ 𝑡′

1 at which an honest node enters the new maximum active round 𝑛 for the first time. By
Lemma L5, the leader of round 𝑛 will switch to its own round 𝑛 between 𝑡2 and 𝑡2 + 𝛿.

No honest node will timeout until 𝑡2+duration(𝑛𝑐, 𝑛). The time available for the leader of round 𝑛 to
operate before a timeout may occur is at least 𝑡2 +duration(𝑛𝑐, 𝑛)−(𝑡2 +𝛿) = duration(𝑛𝑐, 𝑛)−𝛿 >
3 𝛿. This leaves enough time to complete the following expected tasks:

• Create a valid block at round 𝑛 on top of the highest known QC;
• Broadcast it (time cost ≤ 𝛿);
• Gather a quorum of votes (time cost ≤ 𝛿) — the fact that honest nodes will vote for the

proposed block is discussed below; and
• Complete a broadcast of the new QC, and notably have the next leader receive it (time cost

≤ 𝛿).

Recall that 4 𝛿 < duration(𝑛𝑐, 𝑛) ≤ duration(𝑛𝑐, 𝑛+1) ≤ duration(𝑛𝑐, 𝑛+2). Therefore, the same
reasoning applies to the next leaders at round 𝑛 + 1 and 𝑛 + 2. The leader of round 𝑛 + 2 will observe
three QCs at contiguous rounds 𝑛, 𝑛 + 1, and 𝑛 + 2 – hence a commit – then broadcast. All honest
nodes will have a commit round at least 𝑛 > 𝑛𝑐 at time 𝑡3 = 𝑡2 + (1 + 3 + 3 + 3) 𝛿 = 𝑡2 + 10 𝛿.

Using previous equations, we have:

𝑡3 ≤ 𝑡0 + 𝐼 + 11 𝛿 + (𝑛 − 𝑛0) 𝛿 +
𝑛−1
∑

𝑘=𝑛0

(1 + 𝜆(𝑛𝑐)) ⋅ duration(𝑛𝑐, 𝑘) = 𝑡 − 𝐼 ≤ 𝑡

35

therefore the minimum commit round is greater than 𝑛𝑐 at time 𝑡.
To conclude the proof, we now verify that honest nodes are able to vote consistently on the proposal
of the leaders at round 𝑛, 𝑛 + 1, 𝑛 + 2:

• Honest nodes enter rounds 𝑛, 𝑛+1, 𝑛+2 after time 𝑡0 > 𝐺𝑆𝑇 , and before time 𝑡3 −𝛿. Because
𝑡3 − 𝛿 ≤ 𝑡 − 𝐼 − 𝛿 = 𝑡′, when they do, by the previous assumption, their commit round is still
𝑛𝑐, therefore they all compute the same leaders.

• Because 4 𝛿 < duration(𝑛𝑐, 𝑛) ≤ duration(𝑛𝑐, 𝑛+1) ≤ duration(𝑛𝑐, 𝑛+2), no honest node will
timeout at round 𝑛, 𝑛+1, 𝑛+2. (This would increase their last_voted_round by the definition
of process_pacemaker_actions in Section 7.3.) Honest leaders propose a unique block at their
round, therefore each of the three proposals will pass the first safety rule (increasing-round) of
every honest node.

• Honest leaders propose only after receiving a QC or a TC at the previous round. They always
reference their highest QC in their proposed block. Therefore, Proposition L8 on optimistic
responsiveness show that each proposal will also pass the second safety rule (locked-round).

• Execution is deterministic; therefore, all the honest node proposes the same execution state for
each proposed block. □

Note: In practice, we expect the value 𝐼 to be significantly larger than round timeouts so that the
corresponding query-all actions are rarely triggered. In the context of Theorem L9, the definition of 𝑡
includes a contribution 2 𝐼 that can be mitigated as follows.

• For subsequent commits after GST, we may assume that the highest commit and the highest
QC/TC known to honest nodes was just broadcast at time 𝑡0 > 𝐺𝑆𝑇 . Lemma L6 is no longer
needed, thus we may spare a term 𝐼 + 𝛿.

• If the leader function is such that leader(𝑛𝑐, 𝑘) = leader(𝑛′
𝑐, 𝑘), 𝜆(𝑛𝑐) = 𝜆(𝑛′

𝑐), and
duration(𝑛𝑐, 𝑘) = duration(𝑛′

𝑐, 𝑘) for every 𝑛𝑐 ≤ 𝑛′
𝑐 ≤ 𝑘 ≤ 𝑛 + 2, then in the course of the

liveness proof, nodes are guaranteed to agree on the values of these functions disregarding their
highest commit round 𝑛′

𝑐. Therefore, a second term 𝐼 + 𝛿 may also be spared.

• Note however that the formulation of Theorem L9 assumed for simplicity that no new epoch is
triggered. From the point of view of the commit latency bound, epoch changes have the same
effect as a new commit round 𝑛′

𝑐 such that leader(𝑛𝑐, 𝑛) ≠ leader(𝑛′
𝑐, 𝑛). Hence, they always

entail a term 𝐼 + 𝛿, disregarding the choice of the leader function.

9. Economic Incentives

Finally, we sketch how to economically incentivize LibraBFT nodes for their behaviors in the con-
sensus protocol. Specifically, we show how to reward timely leaders and voters and how to detect
violations of voting constraints and conflicting proposals. This covers the essential behaviors of
participants. In the future, we intend to study how to cover more behaviors, such as timeouts.

The execution of rewards and punishments is meant to be entirely delegated to the execution module
of the Libra Blockchain and programmed using the Move language [39]. Rewards are handled by
adding consensus-provided arguments to the execution callbacks. We sketch possible SMR APIs
in Appendix A.1.

In the case of punishments, we will rely on a whistleblower node to detect a violation, gather crypto-
graphic evidence (see the conditions given below), and submit a punishment request through consensus.
We leave for future work the exact specifications of the corresponding interactions between mempool,
execution, and consensus.

36

9.1. Leaders and Voters

Assume a proposal 𝐵 on top of a quorum certificate 𝐶0, that is, 𝐵0 ← 𝐶0 ← 𝐵. Thanks to
cryptographic chaining, during the execution of the block 𝐵, we may introspect 𝐵0 and 𝐶0 to suggest
rewards for the author of 𝐵0 and the authors of the votes included in the quorum certificate 𝐶0.

APIs to communicate lists of authors and voters to the execution are proposed in Appendix A.1. We
emphasize that rewards concerning 𝐵0 are computed as part of the speculative execution of some
next block 𝐵. They become final when 𝐵 is committed.

Note that we cannot so easily punish unsuccessful leaders leader(𝑛𝑐, 𝑛) for round(𝐵0) < 𝑛 <
round(𝐵) because there may not be agreement between consensus nodes on 𝑛𝑐, the highest com-
mit round preceding 𝐵0.

9.2. Detecting Safety Violations

Looking at the proof of Proposition S4, we notice that the proof of safety relies only on Lemma S2
and Lemma S3.

Interestingly, these two lemmas are merely properties of the tree of records. Therefore, we can
translate them into the following conditions to prove that a node 𝛼 is trying to break safety:

(conflicting-votes) There exist two votes, 𝐵1 ← 𝑉1 and 𝐵2 ← 𝑉2, such that
round(𝐵1) = round(𝐵2), author(𝑉1) = author(𝑉2) = 𝛼, and either 𝐵1 ≠ 𝐵2 or
state(𝑉1) ≠ state(𝑉2).

(locked-round-violation) There exist a vote following a 2-chain 𝐵0 ← 𝐶0 ← 𝐵1 ←
𝐶1 ← 𝐵2 ← 𝑉2 and a vote 𝐵 ← 𝑉 , such that author(𝑉2) = author(𝑉) = 𝛼, round(𝐵) >
round(𝐵2), and previous_round(𝐵) < round(𝐵0).

Proposition E1 (Safe detection): A node that respects the voting rules (increasing-round) and
(locked-round) never triggers the conditions (conflicting-votes) and (locked-round-violation).

Proof: This was proved as part of the proofs of Lemma S2 and Lemma S3, respectively. □

Proposition E2 (Complete detection): If no more than 𝑓 nodes ever triggered the conditions
(conflicting-votes) and (locked-round-violation), then safety holds.

Proof: As mentioned above, the proofs of Proposition S4, or safety, rely only on Lemma S2 and
Lemma S3. We prove these lemmas under the new assumption by considering a non-violating node
(instead of an honest node) at the intersection of the two QCs mentioned at the beginning of the
original proofs. □

9.3. Detecting Conflicting Proposals

According to the protocol, the leader of a round should make only one proposal. Making several
proposals does not endanger safety, but it makes other nodes consume more resources than needed
(e.g., CPU, network). This undesirable behavior is easy to detect:

(conflicting-proposals) There exist two proposals 𝐵1 and 𝐵2 such that round(𝐵1) =
round(𝐵2), 𝐵1 ≠ 𝐵2, and author(𝐵1) = author(𝐵2) = 𝛼.

37

10. Conclusion

We have presented LibraBFT, a state machine replication system based on the HotStuff protocol [5]
and designed for the Libra Blockchain [2]. LibraBFT provides safety and liveness in a Byzantine
setting when up to one-third of voting rights are held by malicious actors, assuming that the network
is partially synchronous. In this report, we have presented detailed proofs of safety and liveness and
covered many important practical considerations, such as networking and data structures. We have
shown that LibraBFT is compatible with proof of stake and can generate incentives for a variety of
behaviors, such as proposing blocks and voting. Thanks to the simplicity of the safety argument in
LibraBFT, we also provided criteria to detect malicious attempts to break safety. These criteria will
be instrumental for the progressive migration of the Libra infrastructure to a permissionless model.

Future work. This report constitutes an initial proposal for LibraBFT and is meant to be updated in
the future. In a next version, we intend to provide experimental results using our simulation code [36]
and using the production implementation currently developed by Calibra engineers.

In the future, we would like to improve our theoretical analysis in several ways. We plan to analyze
networking communication more precisely, with additional studies on message sizes and protocol
optimizations. Regarding the integration of LibraBFT with the Libra Blockchain, we would like
to cover fairness and discuss how light clients can authenticate the set of validators for each epoch.
Economic incentives should reward additional positive behaviors, such as creating timeouts, and
specifications should provide an external protocol for auditors to report violations of safety rules.

On a practical level, we have not yet analyzed resource consumption (memory, CPU, etc.) in the
presence of malicious participants. Heuristics for leader selection, a precise description of the VRF
solution, and possibly adaptive policies will likely be required to increase the robustness of the system
in case of malicious leaders or targeted attacks on leaders.

In the long term, we hope that our efforts on precise specifications and detailed proofs will pave the
way for mechanized proofs of safety and liveness of LibraBFT.

Acknowledgments

We would like to thank the following people for helpful discussions and feedback on this paper: Tarun
Chitra, Ittay Eyal, Klaus Kursawe, John Mitchell, and Jared Saia.

38

A. Programming Interfaces

Note: This section will evolve in the future as we integrate engineering optimizations and make
progress in the software implementation of LibraBFT.

A.1. State Machine Replication

We now present possible programming interfaces for state machine replication (Table 6).

We assume two abstract data types:

• Values of type State are authenticators that refer to a concrete execution state in the Libra
Blockchain.

• Command values are meant to be executed on top of a State value.

At the beginning of the first epoch, we assume that the SMR module of every node is initialized
with the same initial value of type State. As mentioned above (Section 3), in practice, State values
contain a hash value that points to a persistent local storage outside the SMR module.

The SMR module communicates with the other modules of a Libra validator through a number of
APIs (i.e., Rust traits):

• CommandFetcher lets the SMR module fetch user commands from the mempool.
• StateComputer produces a new state hash from the hash of a base state, a command to execute,

and additional contextual data, including a proposed system time and signals for economic
incentives (Section 9).

• StateFinalizer lets the SMR module eventually declare whether each state hash was success-
fully committed or not. In the case of a commit, we pass the quorum certificate that contains
the corresponding committed_state value, as discussed in Section 4.1.

• EpochReader lets the SMR module retrieve a possibly updated epoch identifier from a state, as
well as the current voting rights.

A.2. Record Store

The implementation of the record store is assumed to provide the APIs outlined in Table 7.

In the simulator used as a reference for this report, we implement the RecordStore APIs using the
in-memory data structures described in Table 8. Note that the data structures described here do not
cover constant-time cleanups, persistent storage, and resistance to potential crashes while the record
store is being updated.

A.3. Data-Synchronization Messages

The messages of the data-synchronization protocol (Section 4.6) used in our simulator are described
in Table 9. For simplicity, we have assumed that data are transmitted over authenticated channels
and omitted message signatures.

39

trait CommandFetcher {
/// How to fetch valid commands to submit to the consensus protocol.
fn fetch(&mut self) -> Option<Command>;

}

trait StateComputer {
/// How to execute a command and obtain the next state.
/// If execution fails, the value `None` is returned, meaning that the
/// command should be rejected.
fn compute(

&mut self,
// The state before executing the command.
base_state: &State,
// Command to execute.
command: Command,
// Time associated to this execution step, in agreement with
// other consensus nodes.
time: NodeTime,
// Suggest to reward the author of the previous block, if any.
previous_author: Option<Author>,
// Suggest to reward the voters of the previous block, if any.
previous_voters: Vec<Author>,

) -> Option<State>;
}

/// How to communicate that a state was committed or discarded.
trait StateFinalizer {

/// Report that a state was committed, together with a commit certificate.
fn commit(&mut self, state: &State, commit_certificate: Option<&QuorumCertificate>);

/// Report that a state was discarded.
fn discard(&mut self, state: &State);

}

/// How to communicate that a state was committed or discarded.
trait EpochReader {

/// Read the id of the epoch in a state.
fn read_epoch_id(&self, state: &State) -> EpochId;

/// Return the configuration (i.e. voting rights) for the epoch starting at a given state.
fn configuration(&self, state: &State) -> EpochConfiguration;

}

trait SMRContext: CommandFetcher + StateComputer + StateFinalizer + EpochReader {}

Table 6: Programming interfaces for State Machine Replication

40

trait RecordStore {
/// Return the hash of a QC at the highest round, or the initial hash.
fn highest_quorum_certificate_hash(&self) -> QuorumCertificateHash;
/// Query the round of the highest QC.
fn highest_quorum_certificate_round(&self) -> Round;
/// Query the highest QC.
fn highest_quorum_certificate(&self) -> Option<&QuorumCertificate>;
/// Query the round of the highest TC.
fn highest_timeout_certificate_round(&self) -> Round;
/// Query the round of the highest commit.
fn highest_committed_round(&self) -> Round;
/// Query the last QC of the highest commit rule.
fn highest_commit_certificate(&self) -> Option<&QuorumCertificate>;
/// Current round as seen by the record store.
fn current_round(&self) -> Round;

/// Iterate on the committed blocks starting after the round `after_round` and ending with the
/// highest commit known so far.
fn committed_states_after(&self, after_round: Round) -> Vec<(Round, State)>;

/// Access the block proposed by the leader chosen by the Pacemaker (if any).
fn proposed_block(&self, pacemaker: &Pacemaker) -> Option<(BlockHash, Round, Author)>;
/// Check if a timeout already exists.
fn has_timeout(&self, author: Author, round: Round) -> bool;

/// Create a timeout.
fn create_timeout(&mut self, author: Author, round: Round, smr_context: &mut SMRContext);
/// Fetch a command from mempool and propose a block.
fn propose_block(

&mut self,
local_author: Author,
previous_qc_hash: QuorumCertificateHash,
clock: NodeTime,
smr_context: &mut SMRContext,

);
/// Execute the command contained in a block and vote for the resulting state.
/// Return false if the execution failed.
fn create_vote(

&mut self,
local_author: Author,
block_hash: BlockHash,
smr_context: &mut SMRContext,

) -> bool;
/// Try to create a QC for the last block that we have proposed.
fn check_for_new_quorum_certificate(

&mut self,
local_author: Author,
smr_context: &mut SMRContext,

) -> bool;

/// Compute the previous round and the second previous round of a block.
fn previous_round(&self, block_hash: BlockHash) -> Round;
fn second_previous_round(&self, block_hash: BlockHash) -> Round;
/// Pick an author based on a seed, with chances proportional to voting rights.
fn pick_author(&self, seed: u64) -> Author;

/// APIs supporting data synchronization.
fn timeouts(&self) -> Vec<Timeout>;
fn current_vote(&self, local_author: Author) -> Option<&Vote>;
fn block(&self, block_hash: BlockHash) -> Option<&Block>;
fn known_quorum_certificate_rounds(&self) -> BTreeSet<Round>;
fn verify_quorum_certificate_without_previous_block(&self, qc: &QuorumCertificate) -> Result<()>;
fn unknown_records(&self, known_qc_rounds: BTreeSet<Round>) -> Vec<Record>;
fn insert_network_record(&mut self, record: Record, smr_context: &mut SMRContext);

}

Table 7: Programming interfaces for the record store

41

struct RecordStoreState {
/// Epoch initialization.
epoch_id: EpochId,
configuration: EpochConfiguration,
initial_hash: QuorumCertificateHash,
initial_state: State,
/// Storage of verified blocks and QCs.
blocks: HashMap<BlockHash, Block>,
quorum_certificates: HashMap<QuorumCertificateHash, QuorumCertificate>,
current_proposed_block: Option<BlockHash>,
/// Computed round values.
highest_quorum_certificate_round: Round,
highest_quorum_certificate_hash: QuorumCertificateHash,
highest_timeout_certificate_round: Round,
current_round: Round,
highest_committed_round: Round,
highest_commit_certificate_hash: Option<QuorumCertificateHash>,
/// Storage of verified timeouts at the highest TC round.
highest_timeout_certificate: Option<Vec<Timeout>>,
/// Storage of verified votes and timeouts at the current round.
current_timeouts: HashMap<Author, Timeout>,
current_votes: HashMap<Author, Vote>,
/// Computed weight values.
current_timeouts_weight: usize,
current_election: ElectionState,

}

/// Counting votes for a proposed block and its execution state.
enum ElectionState {

Ongoing { ballot: HashMap<(BlockHash, State), usize> },
Won { block_hash: BlockHash, state: State },
Closed,

}

Table 8: In-memory data structures for the record store

struct DataSyncNotification {
/// Current epoch identifier.
current_epoch: EpochId,
/// Tail QC of the highest commit rule.
highest_commit_certificate: Option<QuorumCertificate>,
/// Highest QC.
highest_quorum_certificate: Option<QuorumCertificate>,
/// Timeouts in the highest TC, then at the current round, if any.
timeouts: Vec<Timeout>,
/// Sender's vote at the current round, if any (meant for the proposer).
current_vote: Option<Vote>,
/// Known proposed block at the current round, if any.
proposed_block: Option<Block>,
/// Active round of the sender's pacemaker.
active_round: Round,

}

struct DataSyncRequest {
/// Current epoch identifier.
current_epoch: EpochId,
/// Selection of rounds for which the receiver already knows a QC.
known_quorum_certificates: BTreeSet<Round>,

}

struct DataSyncResponse {
/// Current epoch identifier.
current_epoch: EpochId,
/// Records for the receiver to insert, for each epoch, in the given order.
records: Vec<(EpochId, Vec<Record>)>,
/// Active round of the sender's pacemaker.
active_round: Round,

}

Table 9: Data-synchronization messages

42

References

[1] The Libra Association, “An Introduction to Libra.” https://libra.org/en-us/whitepaper.

[2] Z. Amsden et al., “The Libra Blockchain.” https://developers.libra.org/docs/the-libra-blockchain-
paper.

[3] L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals problem,” ACM Transactions on
Programming Languages and Systems (TOPLAS’82), vol. 4, no. 3, pp. 382–401, 1982.

[4] S. Bano et al., “Moving toward permissionless consensus.” https://libra.org/permissionless-bloc
kchain.

[5] M. Yin, D. Malkhi, M. K. Reiterand, G. G. Gueta, and I. Abraham, “HotStuff: BFT consensus
in the lens of blockchain,” 2019. http://arxiv.org/abs/1803.05069v4

[6] M. Yin, D. Malkhi, M. K. Reiterand, G. G. Gueta, and I. Abraham, “HotStuff: BFT consensus
with linearity and responsiveness,” in 38th ACM symposium on Principles of Distributed Computing
(PODC’19), 2019.

[7] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008. http://bitcoin.org/bitcoin.
pdf

[8] digiconomist.net, https://digiconomist.net/bitcoin-energy-consumption

[9] arewedecentralizedyet.com, https://arewedecentralizedyet.com/

[10] C. Cachin and M. Vukolić, “Blockchain consensus protocols in the wild,” 2017. https://arxiv.or
g/abs/1707.01873

[11] S. Bano et al., “Consensus in the age of blockchains,” 2017. https://arxiv.org/abs/1711.03936

[12] I. Abraham, D. Malkhi, and others, “The blockchain consensus layer and BFT,” Bulletin of
EATCS, vol. 3, no. 123, 2017.

[13] M. Ben-Or, “Another advantage of free choice: Completely asynchronous agreement protocols,”
in 2nd ACM symposium on Principles of Distributed Computing (PODC’83), 1983, pp. 27–30.

[14] P. Feldman and S. Micali, “Optimal algorithms for byzantine agreement,” in 20th annual ACM
symposium on Theory of Computing, 1988, pp. 148–161.

[15] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey badger of BFT protocols,” in 23rd
ACM SIGSAC conference on Computer and Communications Security (CCS’16), 2016, pp. 31–42.

[16] R. Canetti and T. Rabin, “Fast asynchronous byzantine agreement with optimal resilience,” in
25th annual ACM symposium on Theory of Computing (STOC’93), 1993, pp. 42–51.

[17] I. Abraham, D. Malkhi, and A. Spiegelman, “Validated asynchronous byzantine agreement with
optimal resilience and asymptotically optimal time and word communication.” 2018. https://arxiv.
org/abs/1811.01332

[18] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence of partial synchrony,”
Journal of the ACM (JACM), vol. 35, no. 2, pp. 288–323, 1988.

[19] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in 3rd symposium on Operating
Systems Design and Implementation (OSDI’99), 1999, vol. 99, pp. 173–186.

[20] A. Bessani, J. Sousa, and E. E. P. Alchieri, “State machine replication for the masses with BFT-
SMART,” in 44th annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN’14), 2014, pp. 355–362.

43

https://libra.org/en-us/whitepaper
https://developers.libra.org/docs/the-libra-blockchain-paper
https://developers.libra.org/docs/the-libra-blockchain-paper
https://libra.org/permissionless-blockchain
https://libra.org/permissionless-blockchain
http://arxiv.org/abs/1803.05069v4
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://digiconomist.net/bitcoin-energy-consumption
https://arewedecentralizedyet.com/
https://arxiv.org/abs/1707.01873
https://arxiv.org/abs/1707.01873
https://arxiv.org/abs/1711.03936
https://arxiv.org/abs/1811.01332
https://arxiv.org/abs/1811.01332

[21] E. Androulaki et al., “Hyperledger fabric: A distributed operating system for permissioned
blockchains,” in 13th EuroSys conference (EuroSys’18), 2018, p. 30.

[22] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, “Zyzzyva: Speculative byzantine fault
tolerance,” in 21st ACM SIGOPS Symposium on Operating Systems Principles (SOSP’07), 2007, pp.
45–58.

[23] A. Clement et al., “Upright cluster services,” in 22nd ACM Symposium on Operating Systems
Principles (SOSP’09), 2009, pp. 277–290.

[24] C. Cachin, R. Guerraoui, and L. Rodrigues, Introduction to reliable and secure distributed pro-
gramming. 2011.

[25] M. K. Reiter, “The rampart toolkit for building high-integrity services,” in Theory and practice
in distributed systems, 1995, pp. 99–110.

[26] E. K. Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and B. Ford, “Enhancing bitcoin
security and performance with strong consistency via collective signing,” in 25th USENIX security
symposium (USENIX security ’16), 2016, pp. 279–296.

[27] G. G. Gueta et al., “SBFT: A scalable decentralized trust infrastructure for blockchains,” 2018.
https://arxiv.org/abs/1804.01626

[28] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the Weil pairing,” in Advances in
Cryptology (ASIACRYPT 2001), 2001, pp. 514–532.

[29] E. Buchman, J. Kwon, and Z. Milosevic, “The latest gossip on BFT consensus,” 2018. http:
//arxiv.org/abs/1807.04938v2

[30] V. Buterin and V. Griffith, “Casper, the friendly finality gadget,” 2017. https://arxiv.org/abs/
1710.09437

[31] T. H. Chan, R. Pass, and E. Shi, “PaLa: A simple partially synchronous blockchain.” 2018.
https://eprint.iacr.org/2018/981

[32] Y. Sompolinsky and A. Zohar, “Secure high-rate transaction processing in bitcoin,” in 19th
international conference on financial cryptography and data security (FC’15), 2015, pp. 507–527.

[33] C. Li, P. Li, W. Xu, F. Long, and A. C.-c. Yao, “Scaling Nakamoto consensus to thousands of
transactions per second,” 2018. https://arxiv.org/abs/1805.03870

[34] G. Danezis and D. Hrycyszyn, “Blockmania: From block DAGs to consensus,” 2018. http:
//arxiv.org/abs/1809.01620

[35] “The swirlds hashgraph consensus algorithm: Fair, fast, byzantine fault tolerance,” 2016.

[36] Calibra Research, “LibraBFT simulator.” https://github.com/calibra/research.

[37] F. B. Schneider, “Implementing fault-tolerant services using the state machine approach: A
tutorial,” ACM Computing Surveys (CSUR), pp. 299–319, 1990.

[38] D. Malkhi and M. Reiter, “Byzantine quorum systems,” in 29th annual ACM symposium on
Theory of Computing (STOC’97), 1997.

[39] S. Blackshear et al., “Move: A language with programmable resources.” https://developers.libra
.org/docs/move-paper.

[40] S. Micali, M. Rabin, and S. Vadhan, “Verifiable random functions,” in 40th annual Symposium
on Foundations of Computer Science (FOCS’99), 1999, pp. 120–130.

44

https://arxiv.org/abs/1804.01626
http://arxiv.org/abs/1807.04938v2
http://arxiv.org/abs/1807.04938v2
https://arxiv.org/abs/1710.09437
https://arxiv.org/abs/1710.09437
https://eprint.iacr.org/2018/981
https://arxiv.org/abs/1805.03870
http://arxiv.org/abs/1809.01620
http://arxiv.org/abs/1809.01620
https://github.com/calibra/research
https://developers.libra.org/docs/move-paper
https://developers.libra.org/docs/move-paper

	Introduction
	Overview and Definitions
	State Machine Replication
	Epochs
	Byzantine Fault Tolerance
	Cryptographic Assumptions
	Networking Assumptions and Honest Crashes
	Leaders, Rounds, Blocks, Votes

	Integration with the Libra Blockchain
	Consensus Protocol
	Libra Clients
	Security

	Consensus Data and Networking
	Records
	Verification of Network Records
	Communication Framework
	Data Synchronization
	Runtime Environment
	Data-Synchronization Handlers
	Mathematical Notations

	The LibraBFT Protocol
	Overview of the Protocol
	Chains
	Commit Rule
	First Voting Constraint: Increasing Round
	Second Voting Constraint: Locked Round
	Local State of a Consensus Node and Main Handler API
	Main Handler Implementation

	Proof of Safety
	Preliminaries
	Main Safety Argument

	Liveness Mechanisms of LibraBFT
	Timeout certificates.
	Overview of the Pacemaker
	Pacemaker State and Update API
	Functions Based on the Highest Commit Round
	Prerequisite: Assigning Leaders to Rounds
	Prerequisite: Target Commit Interval
	Prerequisite: Assigning Durations to Rounds
	Prerequisite: Periodic Query-all after Timeouts
	Pacemaker State
	Pacemaker Update Handler
	Commit tracker
	Synchronizing and Cleaning Records

	Proof of Liveness
	Active Rounds
	Synchronization of Active Rounds
	Optimistic Responsiveness
	Main Proof

	Economic Incentives
	Leaders and Voters
	Detecting Safety Violations
	Detecting Conflicting Proposals

	Conclusion
	Acknowledgments
	Programming Interfaces
	State Machine Replication
	Record Store
	Data-Synchronization Messages

	References

